亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Copula-based models provide a great deal of flexibility in modelling multivariate distributions, allowing for the specifications of models for the marginal distributions separately from the dependence structure (copula) that links them to form a joint distribution. Choosing a class of copula models is not a trivial task and its misspecification can lead to wrong conclusions. We introduce a novel class of grid-uniform copula functions, which is dense in the space of all continuous copula functions in a Hellinger sense. We propose a Bayesian model based on this class and develop an automatic Markov chain Monte Carlo algorithm for exploring the corresponding posterior distribution. The methodology is illustrated by means of simulated data and compared to the main existing approach.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 流形學習 · 易處理的 · 學成 · Performer ·
2021 年 10 月 29 日

Normalizing flows are inevitable neural networks with tractable change-of-volume terms, which allow optimization of their parameters to be efficiently performed via maximum likelihood. However, data of interest are typically assumed to live in some (often unknown) low-dimensional manifold embedded in a high-dimensional ambient space. The result is a modelling mismatch since -- by construction -- the invertibility requirement implies high-dimensional support of the learned distribution. Injective flows, mappings from low- to high-dimensional spaces, aim to fix this discrepancy by learning distributions on manifolds, but the resulting volume-change term becomes more challenging to evaluate. Current approaches either avoid computing this term entirely using various heuristics, or assume the manifold is known beforehand and therefore are not widely applicable. Instead, we propose two methods to tractably calculate the gradient of this term with respect to the parameters of the model, relying on careful use of automatic differentiation and techniques from numerical linear algebra. Both approaches perform end-to-end nonlinear manifold learning and density estimation for data projected onto this manifold. We study the trade-offs between our proposed methods, empirically verify that we outperform approaches ignoring the volume-change term by more accurately learning manifolds and the corresponding distributions on them, and show promising results on out-of-distribution detection. Our code is available at //github.com/layer6ai-labs/rectangular-flows.

Fair ranking problems arise in many decision-making processes that often necessitate a trade-off between accuracy and fairness. Many existing studies have proposed correction methods such as adding fairness constraints to a ranking model's loss. However, the challenge of correcting the data bias for fair ranking remains, and the trade-off of the ranking models leaves room for improvement. In this paper, we propose a fair ranking framework that evaluates the order of training data in a pairwise manner as well as various fairness measurements in ranking. This study is the first proposal of a pre-processing method that solves fair ranking problems using the pairwise ordering method with our best knowledge. The fair pairwise ordering method is prominent in training the fair ranking models because it ensures that the resulting ranking likely becomes parity across groups. As far as the fairness measurements in ranking are represented as a linear constraint of the ranking models, we proved that the minimization of loss function subject to the constraints is reduced to the closed solution of the minimization problem augmented by weights to training data. This closed solution inspires us to present a practical and stable algorithm that iterates the optimization of weights and model parameters. The empirical results over real-world datasets demonstrated that our method outperforms the existing methods in the trade-off between accuracy and fairness over real-world datasets and various fairness measurements.

Bayesian inference provides a framework to combine an arbitrary number of model components with shared parameters, allowing joint uncertainty estimation and the use of all available data sources. However, misspecification of any part of the model might propagate to all other parts and lead to unsatisfactory results. Cut distributions have been proposed as a remedy, where the information is prevented from flowing along certain directions. We consider cut distributions from an asymptotic perspective, find the equivalent of the Laplace approximation, and notice a lack of frequentist coverage for the associate credible regions. We propose algorithms based on the Posterior Bootstrap that deliver credible regions with the nominal frequentist asymptotic coverage. The algorithms involve numerical optimization programs that can be performed fully in parallel. The results and methods are illustrated in various settings, such as causal inference with propensity scores and epidemiological studies.

The idea of covariate balance is at the core of causal inference. Inverse propensity weights play a central role because they are the unique set of weights that balance the covariate distributions of different treatment groups. We discuss two broad approaches to estimating these weights: the more traditional one, which fits a propensity score model and then uses the reciprocal of the estimated propensity score to construct weights, and the balancing approach, which estimates the inverse propensity weights essentially by the method of moments, finding weights that achieve balance in the sample. We review ideas from the causal inference, sample surveys, and semiparametric estimation literatures, with particular attention to the role of balance as a sufficient condition for robust inference. We focus on the inverse propensity weighting and augmented inverse propensity weighting estimators for the average treatment effect given strong ignorability and consider generalizations for a broader class of problems including policy evaluation and the estimation of individualized treatment effects.

Graphs have been commonly used to represent complex data structures. In models dealing with graph-structured data, multivariate parameters may not only exhibit sparse patterns but have structured sparsity and smoothness in the sense that both zero and non-zero parameters tend to cluster together. We propose a new prior for high-dimensional parameters with graphical relations, referred to as the Tree-based Low-rank Horseshoe (T-LoHo) model, that generalizes the popular univariate Bayesian horseshoe shrinkage prior to the multivariate setting to detect structured sparsity and smoothness simultaneously. The T-LoHo prior can be embedded in many high-dimensional hierarchical models. To illustrate its utility, we apply it to regularize a Bayesian high-dimensional regression problem where the regression coefficients are linked by a graph, so that the resulting clusters have flexible shapes and satisfy the cluster contiguity constraint with respect to the graph. We design an efficient Markov chain Monte Carlo algorithm that delivers full Bayesian inference with uncertainty measures for model parameters such as the number of clusters. We offer theoretical investigations of the clustering effects and posterior concentration results. Finally, we illustrate the performance of the model with simulation studies and a real data application for anomaly detection on a road network. The results indicate substantial improvements over other competing methods such as the sparse fused lasso.

Copulas are a powerful tool for modeling multivariate distributions as they allow to separately estimate the univariate marginal distributions and the joint dependency structure. However, known parametric copulas offer limited flexibility especially in high dimensions, while commonly used non-parametric methods suffer from the curse of dimensionality. A popular remedy is to construct a tree-based hierarchy of conditional bivariate copulas. In this paper, we propose a flexible, yet conceptually simple alternative based on implicit generative neural networks. The key challenge is to ensure marginal uniformity of the estimated copula distribution. We achieve this by learning a multivariate latent distribution with unspecified marginals but the desired dependency structure. By applying the probability integral transform, we can then obtain samples from the high-dimensional copula distribution without relying on parametric assumptions or the need to find a suitable tree structure. Experiments on synthetic and real data from finance, physics, and image generation demonstrate the performance of this approach.

The semiparametric estimation approach, which includes inverse-probability-weighted and doubly robust estimation using propensity scores, is a standard tool for marginal structural models basically used in causal inference, and is rapidly being extended and generalized in various directions. On the other hand, although model selection is indispensable in statistical analysis, information criterion for selecting an appropriate marginal structure has just started to be developed. In this paper, based on the original idea of the information criterion, we derive an AIC-type criterion. We define a risk function based on the Kullback-Leibler divergence as the cornerstone of the information criterion, and treat a general causal inference model that is not necessarily of the type represented as a linear model. The causal effects to be estimated are those in the general population, such as the average treatment effect on the treated or the average treatment effect on the untreated. In light of the fact that doubly robust estimation, which allows either the model of the assignment variable or the model of the outcome variable to be wrong, is attached importance in this field, we will make the information criterion itself doubly robust, so that either one of the two can be wrong and still be a mathematically valid criterion.

We study approximation methods for a large class of mixed models with a probit link function that includes mixed versions of the binomial model, the multinomial model, and generalized survival models. The class of models is special because the marginal likelihood can be expressed as Gaussian weighted integrals or as multivariate Gaussian cumulative density functions. The latter approach is unique to the probit link function models and has been proposed for parameter estimation in complex, mixed effects models. However, it has not been investigated in which scenarios either form is preferable. Our simulations and data example show that neither form is preferable in general and give guidance on when to approximate the cumulative density functions and when to approximate the Gaussian weighted integrals and, in the case of the latter, which general purpose method to use among a large list of methods.

Models of stochastic processes are widely used in almost all fields of science. Theory validation, parameter estimation, and prediction all require model calibration and statistical inference using data. However, data are almost always incomplete observations of reality. This leads to a great challenge for statistical inference because the likelihood function will be intractable for almost all partially observed stochastic processes. This renders many statistical methods, especially within a Bayesian framework, impossible to implement. Therefore, computationally expensive likelihood-free approaches are applied that replace likelihood evaluations with realisations of the model and observation process. For accurate inference, however, likelihood-free techniques may require millions of expensive stochastic simulations. To address this challenge, we develop a new method based on recent advances in multilevel and multifidelity. Our approach combines the multilevel Monte Carlo telescoping summation, applied to a sequence of approximate Bayesian posterior targets, with a multifidelity rejection sampler to minimise the number of computationally expensive exact simulations required for accurate inference. We present the derivation of our new algorithm for likelihood-free Bayesian inference, discuss practical implementation details, and demonstrate substantial performance improvements. Using examples from systems biology, we demonstrate improvements of more than two orders of magnitude over standard rejection sampling techniques. Our approach is generally applicable to accelerate other sampling schemes, such as sequential Monte Carlo, to enable feasible Bayesian analysis for realistic practical applications in physics, chemistry, biology, epidemiology, ecology and economics.

The Tangle is the data structure used to store transactions in the IOTA cryptocurrency. In the Tangle, each block has two parents. As a result, the blocks do not form a chain, but a directed acyclic graph. In traditional Blockchain, a new block is appended to the heaviest chain in case of fork. In the Tangle, the parent selection is done by the Tip Selection Algorithm (TSA). In this paper, we make some important observations about the security of existing TSAs. We then propose a new TSA that has low complexity and is more secure than previous TSAs.

北京阿比特科技有限公司