亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Automatic camera-assisted monitoring of insects for abundance estimations is crucial to understand and counteract ongoing insect decline. In this paper, we present two datasets of nocturnal insects, especially moths as a subset of Lepidoptera, photographed in Central Europe. One of the datasets, the EU-Moths dataset, was captured manually by citizen scientists and contains species annotations for 200 different species and bounding box annotations for those. We used this dataset to develop and evaluate a two-stage pipeline for insect detection and moth species classification in previous work. We further introduce a prototype for an automated visual monitoring system. This prototype produced the second dataset consisting of more than 27,000 images captured on 95 nights. For evaluation and bootstrapping purposes, we annotated a subset of the images with bounding boxes enframing nocturnal insects. Finally, we present first detection and classification baselines for these datasets and encourage other scientists to use this publicly available data.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

Realistic reservoir simulation is known to be prohibitively expensive in terms of computation time when increasing the accuracy of the simulation or by enlarging the model grid size. One method to address this issue is to parallelize the computation by dividing the model in several partitions and using multiple CPUs to compute the result using techniques such as MPI and multi-threading. Alternatively, GPUs are also a good candidate to accelerate the computation due to their massively parallel architecture that allows many floating point operations per second to be performed. The numerical iterative solver takes thus the most computational time and is challenging to solve efficiently due to the dependencies that exist in the model between cells. In this work, we evaluate the OPM Flow simulator and compare several state-of-the-art GPU solver libraries as well as custom developed solutions for a BiCGStab solver using an ILU0 preconditioner and benchmark their performance against the default DUNE library implementation running on multiple CPU processors using MPI. The evaluated GPU software libraries include a manual linear solver in OpenCL and the integration of several third party sparse linear algebra libraries, such as cuSparse, rocSparse, and amgcl. To perform our bench-marking, we use small, medium, and large use cases, starting with the public test case NORNE that includes approximately 50k active cells and ending with a large model that includes approximately 1 million active cells. We find that a GPU can accelerate a single dual-threaded MPI process up to 5.6 times, and that it can compare with around 8 dual-threaded MPI processes.

We focus on the task of soundscape mapping, which involves predicting the most probable sounds that could be perceived at a particular geographic location. We utilise recent state-of-the-art models to encode geotagged audio, a textual description of the audio, and an overhead image of its capture location using contrastive pre-training. The end result is a shared embedding space for the three modalities, which enables the construction of soundscape maps for any geographic region from textual or audio queries. Using the SoundingEarth dataset, we find that our approach significantly outperforms the existing SOTA, with an improvement of image-to-audio Recall@100 from 0.256 to 0.450. Our code is available at //github.com/mvrl/geoclap.

The integration of semantic information in a map allows robots to understand better their environment and make high-level decisions. In the last few years, neural networks have shown enormous progress in their perception capabilities. However, when fusing multiple observations from a neural network in a semantic map, its inherent overconfidence with unknown data gives too much weight to the outliers and decreases the robustness. To mitigate this issue we propose a novel robust fusion method to combine multiple Bayesian semantic predictions. Our method uses the uncertainty estimation provided by a Bayesian neural network to calibrate the way in which the measurements are fused. This is done by regularizing the observations to mitigate the problem of overconfident outlier predictions and using the epistemic uncertainty to weigh their influence in the fusion, resulting in a different formulation of the probability distributions. We validate our robust fusion strategy by performing experiments on photo-realistic simulated environments and real scenes. In both cases, we use a network trained on different data to expose the model to varying data distributions. The results show that considering the model's uncertainty and regularizing the probability distribution of the observations distribution results in a better semantic segmentation performance and more robustness to outliers, compared with other methods. Video - //youtu.be/5xVGm7z9c-0

Conventional multiple-point active noise control (ANC) systems require placing error microphones within the region of interest (ROI), inconveniencing users. This paper designs a feasible monitoring microphone arrangement placed outside the ROI, providing a user with more freedom of movement. The soundfield within the ROI is interpolated from the microphone signals using a physics-informed neural network (PINN). PINN exploits the acoustic wave equation to assist soundfield interpolation under a limited number of monitoring microphones, and demonstrates better interpolation performance than the spherical harmonic method in simulations. An ANC system is designed to take advantage of the interpolated signal to reduce noise signal within the ROI. The PINN-assisted ANC system reduces noise more than that of the multiple-point ANC system in simulations.

3D scene graphs offer a more efficient representation of the environment by hierarchically organizing diverse semantic entities and the topological relationships among them. Fiducial markers, on the other hand, offer a valuable mechanism for encoding comprehensive information pertaining to environments and the objects within them. In the context of Visual SLAM (VSLAM), especially when the reconstructed maps are enriched with practical semantic information, these markers have the potential to enhance the map by augmenting valuable semantic information and fostering meaningful connections among the semantic objects. In this regard, this paper exploits the potential of fiducial markers to incorporate a VSLAM framework with hierarchical representations that generates optimizable multi-layered vision-based situational graphs. The framework comprises a conventional VSLAM system with low-level feature tracking and mapping capabilities bolstered by the incorporation of a fiducial marker map. The fiducial markers aid in identifying walls and doors in the environment, subsequently establishing meaningful associations with high-level entities, including corridors and rooms. Experimental results are conducted on a real-world dataset collected using various legged robots and benchmarked against a Light Detection And Ranging (LiDAR)-based framework (S-Graphs) as the ground truth. Consequently, our framework not only excels in crafting a richer, multi-layered hierarchical map of the environment but also shows enhancement in robot pose accuracy when contrasted with state-of-the-art methodologies.

We introduce RotateIt, a system that enables fingertip-based object rotation along multiple axes by leveraging multimodal sensory inputs. Our system is trained in simulation, where it has access to ground-truth object shapes and physical properties. Then we distill it to operate on realistic yet noisy simulated visuotactile and proprioceptive sensory inputs. These multimodal inputs are fused via a visuotactile transformer, enabling online inference of object shapes and physical properties during deployment. We show significant performance improvements over prior methods and the importance of visual and tactile sensing.

Optimizing video inference efficiency has become increasingly important with the growing demand for video analysis in various fields. Some existing methods achieve high efficiency by explicit discard of spatial or temporal information, which poses challenges in fast-changing and fine-grained scenarios. To address these issues, we propose an efficient video representation network with Differentiable Resolution Compression and Alignment mechanism, which compresses non-essential information in the early stage of the network to reduce computational costs while maintaining consistent temporal correlations. Specifically, we leverage a Differentiable Context-aware Compression Module to encode the saliency and non-saliency frame features, refining and updating the features into a high-low resolution video sequence. To process the new sequence, we introduce a new Resolution-Align Transformer Layer to capture global temporal correlations among frame features with different resolutions, while reducing spatial computation costs quadratically by utilizing fewer spatial tokens in low-resolution non-saliency frames. The entire network can be end-to-end optimized via the integration of the differentiable compression module. Experimental results show that our method achieves the best trade-off between efficiency and performance on near-duplicate video retrieval and competitive results on dynamic video classification compared to state-of-the-art methods. Code://github.com/dun-research/DRCA

Owing to effective and flexible data acquisition, unmanned aerial vehicle (UAV) has recently become a hotspot across the fields of computer vision (CV) and remote sensing (RS). Inspired by recent success of deep learning (DL), many advanced object detection and tracking approaches have been widely applied to various UAV-related tasks, such as environmental monitoring, precision agriculture, traffic management. This paper provides a comprehensive survey on the research progress and prospects of DL-based UAV object detection and tracking methods. More specifically, we first outline the challenges, statistics of existing methods, and provide solutions from the perspectives of DL-based models in three research topics: object detection from the image, object detection from the video, and object tracking from the video. Open datasets related to UAV-dominated object detection and tracking are exhausted, and four benchmark datasets are employed for performance evaluation using some state-of-the-art methods. Finally, prospects and considerations for the future work are discussed and summarized. It is expected that this survey can facilitate those researchers who come from remote sensing field with an overview of DL-based UAV object detection and tracking methods, along with some thoughts on their further developments.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

北京阿比特科技有限公司