We present a method for finding envy-free prices in a combinatorial auction where the consumers' number $n$ coincides with that of distinct items for sale, each consumer can buy one single item and each item has only one unit available. This is a particular case of the {\it unit-demand envy-free pricing problem}, and was recently revisited by Arbib et al. (2019). These authors proved that using a Fibonacci heap for solving the maximum weight perfect matching and the Bellman-Ford algorithm for getting the envy-free prices, the overall time complexity for solving the problem is $O(n^3)$. We propose a method based on dynamic programming design strategy that seeks the optimal envy-free prices by increasing the consumers' utilities, which has the same cubic complexity time as the aforementioned approach, but whose theoretical and empirical results indicate that our method performs faster than the shortest paths strategy, obtaining an average time reduction in determining optimal envy-free prices of approximately 48\%.
We consider several basic questions on distributed routing in directed graphs with multiple additive costs, or metrics, and multiple constraints. Distributed routing in this sense is used in several protocols, such as IS-IS and OSPF. A practical approach to the multi-constraint routing problem is to, first, combine the metrics into a single `composite' metric, and then apply one-to-all shortest path algorithms, e.g. Dijkstra, in order to find shortest path trees. We show that, in general, even if a feasible path exists and is known for every source and destination pair, it is impossible to guarantee a distributed routing under several constraints. We also study the question of choosing the optimal `composite' metric. We show that under certain mathematical assumptions we can efficiently find a convex combination of several metrics that maximizes the number of discovered feasible paths. Sometimes it can be done analytically, and is in general possible using what we call a 'smart iterative approach'. We illustrate these findings by extensive experiments on several typical network topologies.
A recent body of work has demonstrated that Transformer embeddings can be linearly decomposed into well-defined sums of factors, that can in turn be related to specific network inputs or components. There is however still a dearth of work studying whether these mathematical reformulations are empirically meaningful. In the present work, we study representations from machine-translation decoders using two of such embedding decomposition methods. Our results indicate that, while decomposition-derived indicators effectively correlate with model performance, variation across different runs suggests a more nuanced take on this question. The high variability of our measurements indicate that geometry reflects model-specific characteristics more than it does sentence-specific computations, and that similar training conditions do not guarantee similar vector spaces.
Bayesian cross-validation (CV) is a popular method for predictive model assessment that is simple to implement and broadly applicable. A wide range of CV schemes is available for time series applications, including generic leave-one-out (LOO) and K-fold methods, as well as specialized approaches intended to deal with serial dependence such as leave-future-out (LFO), h-block, and hv-block. Existing large-sample results show that both specialized and generic methods are applicable to models of serially-dependent data. However, large sample consistency results overlook the impact of sampling variability on accuracy in finite samples. Moreover, the accuracy of a CV scheme depends on many aspects of the procedure. We show that poor design choices can lead to elevated rates of adverse selection. In this paper, we consider the problem of identifying the regression component of an important class of models of data with serial dependence, autoregressions of order p with q exogenous regressors (ARX(p,q)), under the logarithmic scoring rule. We show that when serial dependence is present, scores computed using the joint (multivariate) density have lower variance and better model selection accuracy than the popular pointwise estimator. In addition, we present a detailed case study of the special case of ARX models with fixed autoregressive structure and variance. For this class, we derive the finite-sample distribution of the CV estimators and the model selection statistic. We conclude with recommendations for practitioners.
We establish finite-sample guarantees for efficient proper learning of bounded-degree polytrees, a rich class of high-dimensional probability distributions and a subclass of Bayesian networks, a widely-studied type of graphical model. Recently, Bhattacharyya et al. (2021) obtained finite-sample guarantees for recovering tree-structured Bayesian networks, i.e., 1-polytrees. We extend their results by providing an efficient algorithm which learns $d$-polytrees in polynomial time and sample complexity for any bounded $d$ when the underlying undirected graph (skeleton) is known. We complement our algorithm with an information-theoretic sample complexity lower bound, showing that the dependence on the dimension and target accuracy parameters are nearly tight.
We extend a Discrete Time Random Walk (DTRW) numerical scheme to simulate the anomalous diffusion of financial market orders in a simulated order book. Here using random walks with Sibuya waiting times to include a time-dependent stochastic forcing function with non-uniformly sampled times between order book events in the setting of fractional diffusion. This models the fluid limit of an order book by modelling the continuous arrival, cancellation and diffusion of orders in the presence of information shocks. We study the impulse response and stylised facts of orders undergoing anomalous diffusion for different forcing functions and model parameters. Concretely, we demonstrate the price impact for flash limit-orders and market orders and show how the numerical method generate kinks in the price impact. We use cubic spline interpolation to generate smoothed price impact curves. The work promotes the use of non-uniform sampling in the presence of diffusive dynamics as the preferred simulation method.
A connected matching in a graph G consists of a set of pairwise disjoint edges whose covered vertices induce a connected subgraph of G. While finding a connected matching of maximum cardinality is a well-solved problem, it is NP-hard to determine an optimal connected matching in an edge-weighted graph, even in the planar bipartite case. We present two mixed integer programming formulations and a sophisticated branch-and-cut scheme to find weighted connected matchings in general graphs. The formulations explore different polyhedra associated to this problem, including strong valid inequalities both from the matching polytope and from the connected subgraph polytope. We conjecture that one attains a tight approximation of the convex hull of connected matchings using our strongest formulation, and report encouraging computational results over DIMACS Implementation Challenge benchmark instances. The source code of the complete implementation is also made available.
While well-established methods for time-to-event data are available when the proportional hazards assumption holds, there is no consensus on the best inferential approach under non-proportional hazards (NPH). However, a wide range of parametric and non-parametric methods for testing and estimation in this scenario have been proposed. To provide recommendations on the statistical analysis of clinical trials where non proportional hazards are expected, we conducted a comprehensive simulation study under different scenarios of non-proportional hazards, including delayed onset of treatment effect, crossing hazard curves, subgroups with different treatment effect and changing hazards after disease progression. We assessed type I error rate control, power and confidence interval coverage, where applicable, for a wide range of methods including weighted log-rank tests, the MaxCombo test, summary measures such as the restricted mean survival time (RMST), average hazard ratios, and milestone survival probabilities as well as accelerated failure time regression models. We found a trade-off between interpretability and power when choosing an analysis strategy under NPH scenarios. While analysis methods based on weighted logrank tests typically were favorable in terms of power, they do not provide an easily interpretable treatment effect estimate. Also, depending on the weight function, they test a narrow null hypothesis of equal hazard functions and rejection of this null hypothesis may not allow for a direct conclusion of treatment benefit in terms of the survival function. In contrast, non-parametric procedures based on well interpretable measures as the RMST difference had lower power in most scenarios. Model based methods based on specific survival distributions had larger power, however often gave biased estimates and lower than nominal confidence interval coverage.
As text-to-speech technologies achieve remarkable naturalness in read-aloud tasks, there is growing interest in multimodal synthesis of verbal and non-verbal communicative behaviour, such as spontaneous speech and associated body gestures. This paper presents a novel, unified architecture for jointly synthesising speech acoustics and skeleton-based 3D gesture motion from text, trained using optimal-transport conditional flow matching (OT-CFM). The proposed architecture is simpler than the previous state of the art, has a smaller memory footprint, and can capture the joint distribution of speech and gestures, generating both modalities together in one single process. The new training regime, meanwhile, enables better synthesis quality in much fewer steps (network evaluations) than before. Uni- and multimodal subjective tests demonstrate improved speech naturalness, gesture human-likeness, and cross-modal appropriateness compared to existing benchmarks.
In 1976, Lai constructed a nontrivial confidence sequence for the mean $\mu$ of a Gaussian distribution with unknown variance $\sigma$. Curiously, he employed both an improper (right Haar) mixture over $\sigma$ and an improper (flat) mixture over $\mu$. Here, we elaborate carefully on the details of his construction, which use generalized nonintegrable martingales and an extended Ville's inequality. While this does yield a sequential t-test, it does not yield an ``e-process'' (due to the nonintegrability of his martingale). In this paper, we develop two new e-processes and confidence sequences for the same setting: one is a test martingale in a reduced filtration, while the other is an e-process in the canonical data filtration. These are respectively obtained by swapping Lai's flat mixture for a Gaussian mixture, and swapping the right Haar mixture over $\sigma$ with the maximum likelihood estimate under the null, as done in universal inference. We also analyze the width of resulting confidence sequences, which have a curious dependence on the error probability $\alpha$. Numerical experiments are provided along the way to compare and contrast the various approaches.
Stress testing refers to the application of adverse financial or macroeconomic scenarios to a portfolio. For this purpose, financial or macroeconomic risk factors are linked with asset returns, typically via a factor model. We expand the range of risk factors by adapting dimension-reduction techniques from unsupervised learning, namely PCA and autoencoders. This results in aggregated risk factors, encompassing a global factor, factors representing broad geographical regions, and factors specific to cyclical and defensive industries. As the adapted PCA and autoencoders provide an interpretation of the latent factors, this methodology is also valuable in other areas where dimension-reduction and explainability are crucial.