Interactive Machine Learning (IML) seeks to integrate human expertise into machine learning processes. However, most existing algorithms cannot be applied to Realworld Scenarios because their state spaces and/or action spaces are limited to discrete values. Furthermore, the interaction of all existing methods is restricted to deciding between multiple proposals. We therefore propose a novel framework based on Bayesian Optimization (BO). Interactive Bayesian Optimization (IBO) enables collaboration between machine learning algorithms and humans. This framework captures user preferences and provides an interface for users to shape the strategy by hand. Additionally, we've incorporated a new acquisition function, Preference Expected Improvement (PEI), to refine the system's efficiency using a probabilistic model of the user preferences. Our approach is geared towards ensuring that machines can benefit from human expertise, aiming for a more aligned and effective learning process. In the course of this work, we applied our method to simulations and in a real world task using a Franka Panda robot to show human-robot collaboration.
Recurrent Spiking Neural Networks (RSNNs) have emerged as a computationally efficient and brain-inspired learning model. The design of sparse RSNNs with fewer neurons and synapses helps reduce the computational complexity of RSNNs. Traditionally, sparse SNNs are obtained by first training a dense and complex SNN for a target task, and, then, pruning neurons with low activity (activity-based pruning) while maintaining task performance. In contrast, this paper presents a task-agnostic methodology for designing sparse RSNNs by pruning a large randomly initialized model. We introduce a novel Lyapunov Noise Pruning (LNP) algorithm that uses graph sparsification methods and utilizes Lyapunov exponents to design a stable sparse RSNN from a randomly initialized RSNN. We show that the LNP can leverage diversity in neuronal timescales to design a sparse Heterogeneous RSNN (HRSNN). Further, we show that the same sparse HRSNN model can be trained for different tasks, such as image classification and temporal prediction. We experimentally show that, in spite of being task-agnostic, LNP increases computational efficiency (fewer neurons and synapses) and prediction performance of RSNNs compared to traditional activity-based pruning of trained dense models.
The integration of learning and reasoning is high on the research agenda in AI. Nevertheless, there is only a little attention to use existing background knowledge for reasoning about partially observed scenes to answer questions about the scene. Yet, we as humans use such knowledge frequently to infer plausible answers to visual questions (by eliminating all inconsistent ones). Such knowledge often comes in the form of constraints about objects and it tends to be highly domain or environment-specific. We contribute a novel benchmark called CLEVR-POC for reasoning-intensive visual question answering (VQA) in partially observable environments under constraints. In CLEVR-POC, knowledge in the form of logical constraints needs to be leveraged to generate plausible answers to questions about a hidden object in a given partial scene. For instance, if one has the knowledge that all cups are colored either red, green or blue and that there is only one green cup, it becomes possible to deduce the color of an occluded cup as either red or blue, provided that all other cups, including the green one, are observed. Through experiments, we observe that the low performance of pre-trained vision language models like CLIP (~ 22%) and a large language model (LLM) like GPT-4 (~ 46%) on CLEVR-POC ascertains the necessity for frameworks that can handle reasoning-intensive tasks where environment-specific background knowledge is available and crucial. Furthermore, our demonstration illustrates that a neuro-symbolic model, which integrates an LLM like GPT-4 with a visual perception network and a formal logical reasoner, exhibits exceptional performance on CLEVR-POC.
Embodied Instruction Following (EIF) is a crucial task in embodied learning, requiring agents to interact with their environment through egocentric observations to fulfill natural language instructions. Recent advancements have seen a surge in employing large language models (LLMs) within a framework-centric approach to enhance performance in embodied learning tasks, including EIF. Despite these efforts, there exists a lack of a unified understanding regarding the impact of various components-ranging from visual perception to action execution-on task performance. To address this gap, we introduce OPEx, a comprehensive framework that delineates the core components essential for solving embodied learning tasks: Observer, Planner, and Executor. Through extensive evaluations, we provide a deep analysis of how each component influences EIF task performance. Furthermore, we innovate within this space by deploying a multi-agent dialogue strategy on a TextWorld counterpart, further enhancing task performance. Our findings reveal that LLM-centric design markedly improves EIF outcomes, identify visual perception and low-level action execution as critical bottlenecks, and demonstrate that augmenting LLMs with a multi-agent framework further elevates performance.
Advances in machine learning have boosted the use of Earth observation data for climate change research. Yet, the interpretability of machine-learned representations remains a challenge, particularly in understanding forests' biophysical reactions to climate change. Traditional methods in remote sensing that invert radiative transfer models (RTMs) to retrieve biophysical variables from spectral data often fail to account for biases inherent in the RTM, especially for complex forests. We propose to integrate RTMs into an auto-encoder architecture, creating an end-to-end learning approach. Our method not only corrects biases in RTMs but also outperforms traditional techniques for variable retrieval like neural network regression. Furthermore, our framework has potential generally for inverting biased physical models. The code is available on //github.com/yihshe/ai-refined-rtm.git.
In patent prosecution, timely and effective responses to Office Actions (OAs) are crucial for securing patents. However, past automation and artificial intelligence research have largely overlooked this aspect. To bridge this gap, our study introduces the Patent Office Action Response Intelligence System (PARIS) and its advanced version, the Large Language Model (LLM) Enhanced PARIS (LE-PARIS). These systems are designed to enhance the efficiency of patent attorneys in handling OA responses through collaboration with AI. The systems' key features include the construction of an OA Topics Database, development of Response Templates, and implementation of Recommender Systems and LLM-based Response Generation. To validate the effectiveness of the systems, we have employed a multi-paradigm analysis using the USPTO Office Action database and longitudinal data based on attorney interactions with our systems over six years. Through five studies, we have examined the constructiveness of OA topics (studies 1 and 2) using topic modeling and our proposed Delphi process, the efficacy of our proposed hybrid LLM-based recommender system tailored for OA responses (study 3), the quality of generated responses (study 4), and the systems' practical value in real-world scenarios through user studies (study 5). The results indicate that both PARIS and LE-PARIS significantly achieve key metrics and have a positive impact on attorney performance.
Past analyses of reinforcement learning from human feedback (RLHF) assume that the human fully observes the environment. What happens when human feedback is based only on partial observations? We formally define two failure cases: deception and overjustification. Modeling the human as Boltzmann-rational w.r.t. a belief over trajectories, we prove conditions under which RLHF is guaranteed to result in policies that deceptively inflate their performance, overjustify their behavior to make an impression, or both. To help address these issues, we mathematically characterize how partial observability of the environment translates into (lack of) ambiguity in the learned return function. In some cases, accounting for partial observability makes it theoretically possible to recover the return function and thus the optimal policy, while in other cases, there is irreducible ambiguity. We caution against blindly applying RLHF in partially observable settings and propose research directions to help tackle these challenges.
Though Large Language Models (LLMs) have demonstrated the powerful capabilities of few-shot learning through prompting methods, supervised training is still necessary for complex reasoning tasks. Because of their extensive parameters and memory consumption, both Parameter-Efficient Fine-Tuning (PEFT) methods and Memory-Efficient Fine-Tuning methods have been proposed for LLMs. Nevertheless, the issue of large annotated data consumption, the aim of Data-Efficient Fine-Tuning, remains unexplored. One obvious way is to combine the PEFT method with active learning. However, the experimental results show that such a combination is not trivial and yields inferior results. Through probe experiments, such observation might be explained by two main reasons: uncertainty gap and poor model calibration. Therefore, in this paper, we propose a novel approach to effectively integrate uncertainty-based active learning and LoRA. Specifically, for the uncertainty gap, we introduce a dynamic uncertainty measurement that combines the uncertainty of the base model and the uncertainty of the full model during the iteration of active learning. For poor model calibration, we incorporate the regularization method during LoRA training to keep the model from being over-confident, and the Monte-Carlo dropout mechanism is employed to enhance the uncertainty estimation. Experimental results show that the proposed approach outperforms existing baseline models on three complex reasoning tasks.
As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.
Convolutional Neural Networks (CNNs) have gained significant traction in the field of machine learning, particularly due to their high accuracy in visual recognition. Recent works have pushed the performance of GPU implementations of CNNs to significantly improve their classification and training times. With these improvements, many frameworks have become available for implementing CNNs on both CPUs and GPUs, with no support for FPGA implementations. In this work we present a modified version of the popular CNN framework Caffe, with FPGA support. This allows for classification using CNN models and specialized FPGA implementations with the flexibility of reprogramming the device when necessary, seamless memory transactions between host and device, simple-to-use test benches, and the ability to create pipelined layer implementations. To validate the framework, we use the Xilinx SDAccel environment to implement an FPGA-based Winograd convolution engine and show that the FPGA layer can be used alongside other layers running on a host processor to run several popular CNNs (AlexNet, GoogleNet, VGG A, Overfeat). The results show that our framework achieves 50 GFLOPS across 3x3 convolutions in the benchmarks. This is achieved within a practical framework, which will aid in future development of FPGA-based CNNs.