亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider a team of autonomous agents that navigate in an adversarial environment and aim to achieve a task by allocating their resources over a set of target locations. The adversaries in the environment observe the autonomous team's behavior to infer their objective and counter-allocate their own resources to the target locations. In this setting, we develop strategies for controlling the density of the autonomous team so that they can deceive the adversaries regarding their objective while achieving the desired final resource allocation. We first develop a prediction algorithm, based on the principle of maximum entropy, to express the team's behavior expected by the adversaries. Then, by measuring the deceptiveness via Kullback-Leibler divergence, we develop convex optimization-based planning algorithms that deceives adversaries by either exaggerating the behavior towards a decoy allocation strategy or creating ambiguity regarding the final allocation strategy. Finally, we illustrate the performance of the proposed algorithms through numerical simulations.

相關內容

Predicting the future states of surrounding traffic participants and planning a safe, smooth, and socially compliant trajectory accordingly is crucial for autonomous vehicles. There are two major issues with the current autonomous driving system: the prediction module is often decoupled from the planning module and the cost function for planning is hard to specify and tune. To tackle these issues, we propose an end-to-end differentiable framework that integrates prediction and planning modules and is able to learn the cost function from data. Specifically, we employ a differentiable nonlinear optimizer as the motion planner, which takes the predicted trajectories of surrounding agents given by the neural network as input and optimizes the trajectory for the autonomous vehicle, thus enabling all operations in the framework to be differentiable including the cost function weights. The proposed framework is trained on a large-scale real-world driving dataset to imitate human driving trajectories in the entire driving scene and validated in both open-loop and closed-loop manners. The open-loop testing results reveal that the proposed method outperforms the baseline methods across a variety of metrics and delivers planning-centric prediction results, allowing the planning module to output close-to-human trajectories. In closed-loop testing, the proposed method shows the ability to handle complex urban driving scenarios and robustness against the distributional shift that imitation learning methods suffer from. Importantly, we find that joint training of planning and prediction modules achieves better performance than planning with a separate trained prediction module in both open-loop and closed-loop tests. Moreover, the ablation study indicates that the learnable components in the framework are essential to ensure planning stability and performance.

In this work, we consider the problem of cross-domain 3D action recognition in the open-set setting, which has been rarely explored before. Specifically, there is a source domain and a target domain that contain the skeleton sequences with different styles and categories, and our purpose is to cluster the target data by utilizing the labeled source data and unlabeled target data. For such a challenging task, this paper presents a novel approach dubbed CoDT to collaboratively cluster the domain-shared features and target-specific features. CoDT consists of two parallel branches. One branch aims to learn domain-shared features with supervised learning in the source domain, while the other is to learn target-specific features using contrastive learning in the target domain. To cluster the features, we propose an online clustering algorithm that enables simultaneous promotion of robust pseudo label generation and feature clustering. Furthermore, to leverage the complementarity of domain-shared features and target-specific features, we propose a novel collaborative clustering strategy to enforce pair-wise relationship consistency between the two branches. We conduct extensive experiments on multiple cross-domain 3D action recognition datasets, and the results demonstrate the effectiveness of our method.

Task allocation using a team or coalition of robots is one of the most important problems in robotics, computer science, operational research, and artificial intelligence. In recent work, research has focused on handling complex objectives and feasibility constraints amongst other variations of the multi-robot task allocation problem. There are many examples of important research progress in these directions. We present a general formulation of the task allocation problem that generalizes several versions that are well-studied. Our formulation includes the states of robots, tasks, and the surrounding environment in which they operate. We describe how the problem can vary depending on the feasibility constraints, objective functions, and the level of dynamically changing information. In addition, we discuss existing solution approaches for the problem including optimization-based approaches, and market-based approaches.

Enhancing existing transmission lines is a useful tool to combat transmission congestion and guarantee transmission security with increasing demand and boosting the renewable energy source. This study concerns the selection of lines whose capacity should be expanded and by how much from the perspective of independent system operator (ISO) to minimize the system cost with the consideration of transmission line constraints and electricity generation and demand balance conditions, and incorporating ramp-up and startup ramp rates, shutdown ramp rates, ramp-down rate limits and minimum up and minimum down times. For that purpose, we develop the ISO unit commitment and economic dispatch model and show it as a right-hand side uncertainty multiple parametric analysis for the mixed integer linear programming (MILP) problem. We first relax the binary variable to continuous variables and employ the Lagrange method and Karush-Kuhn-Tucker conditions to obtain optimal solutions (optimal decision variables and objective function) and critical regions associated with active and inactive constraints. Further, we extend the traditional branch and bound method for the large-scale MILP problem by determining the upper bound of the problem at each node, then comparing the difference between the upper and lower bounds and reaching the approximate optimal solution within the decision makers' tolerated error range. In additional, the objective function's first derivative on the parameters of each line is used to inform the selection of lines to ease congestion and maximize social welfare. Finally, the amount of capacity upgrade will be chosen by balancing the cost-reduction rate of the objective function on parameters and the cost of the line upgrade. Our findings are supported by numerical simulation and provide transmission line planners with decision-making guidance.

The resource allocation problem consists of the optimal distribution of a budget between agents in a group. We consider such a problem in the context of open systems, where agents can be replaced at some time instances. These replacements lead to variations in both the budget and the total cost function that hinder the overall network's performance. For a simple setting, we analyze the performance of the Random Coordinate Descent algorithm (RCD) using tools similar to those commonly used in online optimization. In particular, we study the accumulated errors that compare solutions issued from the RCD algorithm and the optimal solution or the non-collaborating selfish strategy and we derive some bounds in expectation for these accumulated errors.

Resource-constrained classification tasks are common in real-world applications such as allocating tests for disease diagnosis, hiring decisions when filling a limited number of positions, and defect detection in manufacturing settings under a limited inspection budget. Typical classification algorithms treat the learning process and the resource constraints as two separate and sequential tasks. Here we design an adaptive learning approach that considers resource constraints and learning jointly by iteratively fine-tuning misclassification costs. Via a structured experimental study using a publicly available data set, we evaluate a decision tree classifier that utilizes the proposed approach. The adaptive learning approach performs significantly better than alternative approaches, especially for difficult classification problems in which the performance of common approaches may be unsatisfactory. We envision the adaptive learning approach as an important addition to the repertoire of techniques for handling resource-constrained classification problems.

For many tasks, state-of-the-art results have been achieved with Transformer-based architectures, resulting in a paradigmatic shift in practices from the use of task-specific architectures to the fine-tuning of pre-trained language models. The ongoing trend consists in training models with an ever-increasing amount of data and parameters, which requires considerable resources. It leads to a strong search to improve resource efficiency based on algorithmic and hardware improvements evaluated only for English. This raises questions about their usability when applied to small-scale learning problems, for which a limited amount of training data is available, especially for under-resourced languages tasks. The lack of appropriately sized corpora is a hindrance to applying data-driven and transfer learning-based approaches with strong instability cases. In this paper, we establish a state-of-the-art of the efforts dedicated to the usability of Transformer-based models and propose to evaluate these improvements on the question-answering performances of French language which have few resources. We address the instability relating to data scarcity by investigating various training strategies with data augmentation, hyperparameters optimization and cross-lingual transfer. We also introduce a new compact model for French FrALBERT which proves to be competitive in low-resource settings.

The prevalence of networked sensors and actuators in many real-world systems such as smart buildings, factories, power plants, and data centers generate substantial amounts of multivariate time series data for these systems. The rich sensor data can be continuously monitored for intrusion events through anomaly detection. However, conventional threshold-based anomaly detection methods are inadequate due to the dynamic complexities of these systems, while supervised machine learning methods are unable to exploit the large amounts of data due to the lack of labeled data. On the other hand, current unsupervised machine learning approaches have not fully exploited the spatial-temporal correlation and other dependencies amongst the multiple variables (sensors/actuators) in the system for detecting anomalies. In this work, we propose an unsupervised multivariate anomaly detection method based on Generative Adversarial Networks (GANs). Instead of treating each data stream independently, our proposed MAD-GAN framework considers the entire variable set concurrently to capture the latent interactions amongst the variables. We also fully exploit both the generator and discriminator produced by the GAN, using a novel anomaly score called DR-score to detect anomalies by discrimination and reconstruction. We have tested our proposed MAD-GAN using two recent datasets collected from real-world CPS: the Secure Water Treatment (SWaT) and the Water Distribution (WADI) datasets. Our experimental results showed that the proposed MAD-GAN is effective in reporting anomalies caused by various cyber-intrusions compared in these complex real-world systems.

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司