This study developed a new statistical model and method for analyzing the precision of binary measurement methods from collaborative studies. The model is based on beta-binomial distributions. In other words, it assumes that the sensitivity of each laboratory obeys a beta distribution, and the binary measured values under a given sensitivity follow a binomial distribution. We propose the key precision measures of repeatability and reproducibility for the model, and provide their unbiased estimates. Further, through consideration of a number of statistical test methods for homogeneity of proportions, we propose appropriate methods for determining laboratory effects in the new model. Finally, we apply the results to real-world examples in the fields of food safety and chemical risk assessment and management.
We consider the discretization of a class of nonlinear parabolic equations by discontinuous Galerkin time-stepping methods and establish a priori as well as conditional a posteriori error estimates. Our approach is motivated by the error analysis in [9] for Runge-Kutta methods for nonlinear parabolic equations; in analogy to [9], the proofs are based on maximal regularity properties of discontinuous Galerkin methods for non-autonomous linear parabolic equations.
We systematically investigate the preservation of differential privacy in functional data analysis, beginning with functional mean estimation and extending to varying coefficient model estimation. Our work introduces a distributed learning framework involving multiple servers, each responsible for collecting several sparsely observed functions. This hierarchical setup introduces a mixed notion of privacy. Within each function, user-level differential privacy is applied to $m$ discrete observations. At the server level, central differential privacy is deployed to account for the centralised nature of data collection. Across servers, only private information is exchanged, adhering to federated differential privacy constraints. To address this complex hierarchy, we employ minimax theory to reveal several fundamental phenomena: from sparse to dense functional data analysis, from user-level to central and federated differential privacy costs, and the intricate interplay between different regimes of functional data analysis and privacy preservation. To the best of our knowledge, this is the first study to rigorously examine functional data estimation under multiple privacy constraints. Our theoretical findings are complemented by efficient private algorithms and extensive numerical evidence, providing a comprehensive exploration of this challenging problem.
We develop and analyze stochastic inexact Gauss-Newton methods for nonlinear least-squares problems and for nonlinear systems ofequations. Random models are formed using suitable sampling strategies for the matrices involved in the deterministic models. The analysis of the expected number of iterations needed in the worst case to achieve a desired level of accuracy in the first-order optimality condition provides guidelines for applying sampling and enforcing, with \minor{a} fixed probability, a suitable accuracy in the random approximations. Results of the numerical validation of the algorithms are presented.
We develop some graph-based tests for spherical symmetry of a multivariate distribution using a method based on data augmentation. These tests are constructed using a new notion of signs and ranks that are computed along a path obtained by optimizing an objective function based on pairwise dissimilarities among the observations in the augmented data set. The resulting tests based on these signs and ranks have the exact distribution-free property, and irrespective of the dimension of the data, the null distributions of the test statistics remain the same. These tests can be conveniently used for high-dimensional data, even when the dimension is much larger than the sample size. Under appropriate regularity conditions, we prove the consistency of these tests in high dimensional asymptotic regime, where the dimension grows to infinity while the sample size may or may not grow with the dimension. We also propose a generalization of our methods to take care of the situations, where the center of symmetry is not specified by the null hypothesis. Several simulated data sets and a real data set are analyzed to demonstrate the utility of the proposed tests.
Mass lumping techniques are commonly employed in explicit time integration schemes for problems in structural dynamics and both avoid solving costly linear systems with the consistent mass matrix and increase the critical time step. In isogeometric analysis, the critical time step is constrained by so-called "outlier" frequencies, representing the inaccurate high frequency part of the spectrum. Removing or dampening these high frequencies is paramount for fast explicit solution techniques. In this work, we propose mass lumping and outlier removal techniques for nontrivial geometries, including multipatch and trimmed geometries. Our lumping strategies provably do not deteriorate (and often improve) the CFL condition of the original problem and are combined with deflation techniques to remove persistent outlier frequencies. Numerical experiments reveal the advantages of the method, especially for simulations covering large time spans where they may halve the number of iterations with little or no effect on the numerical solution.
Many mathematical models of synaptic plasticity have been proposed to explain the diversity of plasticity phenomena observed in biological organisms. These models range from simple interpretations of Hebb's postulate, which suggests that correlated neural activity leads to increases in synaptic strength, to more complex rules that allow bidirectional synaptic updates, ensure stability, or incorporate additional signals like reward or error. At the same time, a range of learning paradigms can be observed behaviorally, from Pavlovian conditioning to motor learning and memory recall. Although it is difficult to directly link synaptic updates to learning outcomes experimentally, computational models provide a valuable tool for building evidence of this connection. In this chapter, we discuss several fundamental learning paradigms, along with the synaptic plasticity rules that might be used to implement them.
This article introduces a novel numerical approach for studying fully nonlinear coagulation-fragmentation models, where both the coagulation and fragmentation components of the collision operator are nonlinear. The model approximates the $3-$wave kinetic equations, a pivotal framework in wave turbulence theory governing the time evolution of wave spectra in weakly nonlinear systems. An implicit finite volume scheme (FVS) is derived to solve this equation. To the best of our knowledge, this is the first numerical scheme capable of accurately capturing the long-term asymptotic behavior of solutions to a fully nonlinear coagulation-fragmentation model that includes both forward and backward energy cascades. The scheme is implemented on some test problems, demonstrating strong alignment with theoretical predictions of energy cascade rates. We further introduce a weighted FVS variant to ensure energy conservation across varying degrees of kernel homogeneity. Convergence and first-order consistency are established through theoretical analysis and verified by experimental convergence orders in test cases.
This study presents the conditional neural fields for reduced-order modeling (CNF-ROM) framework to approximate solutions of parametrized partial differential equations (PDEs). The approach combines a parametric neural ODE (PNODE) for modeling latent dynamics over time with a decoder that reconstructs PDE solutions from the corresponding latent states. We introduce a physics-informed learning objective for CNF-ROM, which includes two key components. First, the framework uses coordinate-based neural networks to calculate and minimize PDE residuals by computing spatial derivatives via automatic differentiation and applying the chain rule for time derivatives. Second, exact initial and boundary conditions (IC/BC) are imposed using approximate distance functions (ADFs) [Sukumar and Srivastava, CMAME, 2022]. However, ADFs introduce a trade-off as their second- or higher-order derivatives become unstable at the joining points of boundaries. To address this, we introduce an auxiliary network inspired by [Gladstone et al., NeurIPS ML4PS workshop, 2022]. Our method is validated through parameter extrapolation and interpolation, temporal extrapolation, and comparisons with analytical solutions.
We study the strong approximation of the solutions to singular stochastic kinetic equations (also referred to as second-order SDEs) driven by $\alpha$-stable processes, using an Euler-type scheme inspired by [11]. For these equations, the stability index $\alpha$ lies in the range $(1,2)$, and the drift term exhibits anisotropic $\beta$-H\"older continuity with $\beta >1 - \frac{\alpha}{2}$. We establish a convergence rate of $(\frac{1}{2} + \frac{\beta}{\alpha(1+\alpha)} \wedge \frac{1}{2})$, which aligns with the results in [4] concerning first-order SDEs.
We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.