Since its invention HyperLogLog has become the standard algorithm for approximate distinct counting. Due to its space efficiency and suitability for distributed systems, it is widely used and also implemented in numerous databases. This work presents UltraLogLog, which shares the same practical properties as HyperLogLog. It is commutative, idempotent, mergeable, and has a fast guaranteed constant-time insert operation. At the same time, it requires 28% less space to encode the same amount of distinct count information, which can be extracted using the maximum likelihood method. Alternatively, a simpler and faster estimator is proposed, which still achieves a space reduction of 24%, but at an estimation speed comparable to that of HyperLogLog. In a non-distributed setting where martingale estimation can be used, UltraLogLog is able to reduce space by 17%. Moreover, its smaller entropy and its 8-bit registers lead to better compaction when using standard compression algorithms. All this is verified by experimental results that are in perfect agreement with the theoretical analysis which also outlines potential for even more space-efficient data structures. A production-ready Java implementation of UltraLogLog has been released as part of the open-source Hash4j library.
Text generation with beam search has proven successful in a wide range of applications. We point out that, though largely overlooked in the literature, the commonly-used implementation of beam decoding (e.g., Hugging Face Transformers and fairseq) uses a first come, first served heuristic: it keeps a set of already completed sequences over time steps and stops when the size of this set reaches the beam size. Based on this finding, we introduce a patience factor, a simple modification to this beam decoding implementation, that generalizes the stopping criterion and provides flexibility to the depth of search. Empirical results demonstrate that adjusting this patience factor improves decoding performance of strong pretrained models on news text summarization and machine translation over diverse language pairs, with a negligible inference slowdown. Our approach only modifies one line of code and can be thus readily incorporated in any implementation. Further, we find that different versions of beam decoding result in large performance differences in summarization, demonstrating the need for clarity in specifying the beam search implementation in research work. Our code will be available upon publication.
Activation sparsity refers to the existence of considerable weakly-contributed elements among activation outputs. As a prevalent property of the models using the ReLU activation function, it has been proven a promising paradigm to boost model inference efficiency. Nevertheless, most large language models (LLMs) adopt activation functions without intrinsic activation sparsity (e.g., GELU and Swish). Some recent efforts have explored introducing ReLU or its variants as the substitutive activation function to help LLMs achieve activation sparsity and inference acceleration, but few can simultaneously obtain high sparsity and comparable model performance. This paper introduces an effective sparsification method named "ProSparse" to push LLMs for higher activation sparsity without decreasing model performance. Specifically, after substituting the activation function of LLMs with ReLU, ProSparse adopts progressive sparsity regularization with a factor smoothly increasing along sine curves in multiple stages. This can enhance activation sparsity and alleviate performance degradation by avoiding radical shifts in activation distribution. With ProSparse, we obtain high sparsity of 89.32% and 88.80% for LLaMA2-7B and LLaMA2-13B, respectively, achieving comparable performance to their original Swish-activated versions. Our inference acceleration experiments further demonstrate the practical acceleration brought by higher activation sparsity.
Bilevel Optimization has witnessed notable progress recently with new emerging efficient algorithms. However, its application in the Federated Learning setting remains relatively underexplored, and the impact of Federated Learning's inherent challenges on the convergence of bilevel algorithms remain obscure. In this work, we investigate Federated Bilevel Optimization problems and propose a communication-efficient algorithm, named FedBiOAcc. The algorithm leverages an efficient estimation of the hyper-gradient in the distributed setting and utilizes the momentum-based variance-reduction acceleration. Remarkably, FedBiOAcc achieves a communication complexity $O(\epsilon^{-1})$, a sample complexity $O(\epsilon^{-1.5})$ and the linear speed up with respect to the number of clients. We also analyze a special case of the Federated Bilevel Optimization problems, where lower level problems are locally managed by clients. We prove that FedBiOAcc-Local, a modified version of FedBiOAcc, converges at the same rate for this type of problems. Finally, we validate the proposed algorithms through two real-world tasks: Federated Data-cleaning and Federated Hyper-representation Learning. Empirical results show superior performance of our algorithms.
Anomaly Detection (AD) is a critical task that involves identifying observations that do not conform to a learned model of normality. Prior work in deep AD is predominantly based on a familiarity hypothesis, where familiar features serve as the reference in a pre-trained embedding space. While this strategy has proven highly successful, it turns out that it causes consistent false negatives when anomalies consist of truly novel features that are not well captured by the pre-trained encoding. We propose a novel approach to AD using explainability to capture such novel features as unexplained observations in the input space. We achieve strong performance across a wide range of anomaly benchmarks by combining familiarity and novelty in a hybrid approach. Our approach establishes a new state-of-the-art across multiple benchmarks, handling diverse anomaly types while eliminating the need for expensive background models and dense matching. In particular, we show that by taking account of novel features, we reduce false negative anomalies by up to 40% on challenging benchmarks compared to the state-of-the-art. Our method gives visually inspectable explanations for pixel-level anomalies.
The field of general time series analysis has recently begun to explore unified modeling, where a common architectural backbone can be retrained on a specific task for a specific dataset. In this work, we approach unification from a complementary vantage point: unification across tasks and domains. To this end, we explore the impact of discrete, learnt, time series data representations that enable generalist, cross-domain training. Our method, TOTEM, or TOkenized Time Series EMbeddings, proposes a simple tokenizer architecture that embeds time series data from varying domains using a discrete vectorized representation learned in a self-supervised manner. TOTEM works across multiple tasks and domains with minimal to no tuning. We study the efficacy of TOTEM with an extensive evaluation on 17 real world time series datasets across 3 tasks. We evaluate both the specialist (i.e., training a model on each domain) and generalist (i.e., training a single model on many domains) settings, and show that TOTEM matches or outperforms previous best methods on several popular benchmarks. The code can be found at: //github.com/SaberaTalukder/TOTEM.
Recent advances in instruction-tuned Large Vision-Language Models (LVLMs) have imbued the models with the ability to generate high-level, image-grounded explanations with ease. While such capability is largely attributed to the rich world knowledge contained within the Large Language Models (LLMs), our work reveals their shortcomings in fine-grained visual categorization (FGVC) across six different benchmark settings. Most recent state-of-the-art LVLMs like LLaVa-1.5, InstructBLIP and GPT-4V not only severely deteriorate in terms of classification performance, e.g., average drop of 65.58 in EM for Stanford Dogs for LLaVA-1.5, but also struggle to generate an accurate explanation with detailed attributes based on the concept that appears within an input image despite their capability to generate holistic image-level descriptions. In-depth analyses show that instruction-tuned LVLMs exhibit modality gap, showing discrepancy when given textual and visual inputs that correspond to the same concept, preventing the image modality from leveraging the rich parametric knowledge within the LLMs. In an effort to further the community's endeavor in this direction, we propose a multiple granularity attribute-centric evaluation benchmark, Finer, which aims to establish a ground to evaluate LVLMs' fine-grained visual comprehension ability and provide significantly improved explainability.
We examine the possibility of approximating Maximum Vertex-Disjoint Shortest Paths. In this problem, the input is an edge-weighted (directed or undirected) $n$-vertex graph $G$ along with $k$ terminal pairs $(s_1,t_1),(s_2,t_2),\ldots,(s_k,t_k)$. The task is to connect as many terminal pairs as possible by pairwise vertex-disjoint paths such that each path is a shortest path between the respective terminals. Our work is anchored in the recent breakthrough by Lochet [SODA '21], which demonstrates the polynomial-time solvability of the problem for a fixed value of $k$. Lochet's result implies the existence of a polynomial-time $ck$-approximation for Maximum Vertex-Disjoint Shortest Paths, where $c \leq 1$ is a constant. Our first result suggests that this approximation algorithm is, in a sense, the best we can hope for. More precisely, assuming the gap-ETH, we exclude the existence of an $o(k)$-approximations within $f(k) \cdot $poly($n$) time for any function $f$ that only depends on $k$. Our second result demonstrates the infeasibility of achieving an approximation ratio of $n^{\frac{1}{2}-\varepsilon}$ in polynomial time, unless P = NP. It is not difficult to show that a greedy algorithm selecting a path with the minimum number of arcs results in a $\lceil\sqrt{\ell}\rceil$-approximation, where $\ell$ is the number of edges in all the paths of an optimal solution. Since $\ell \leq n$, this underscores the tightness of the $n^{\frac{1}{2}-\varepsilon}$-inapproximability bound. Additionally, we establish that Maximum Vertex-Disjoint Shortest Paths is fixed-parameter tractable when parameterized by $\ell$ but does not admit a polynomial kernel. Our hardness results hold for undirected graphs with unit weights, while our positive results extend to scenarios where the input graph is directed and features arbitrary (non-negative) edge weights.
Conceptual spaces represent entities in terms of their primitive semantic features. Such representations are highly valuable but they are notoriously difficult to learn, especially when it comes to modelling perceptual and subjective features. Distilling conceptual spaces from Large Language Models (LLMs) has recently emerged as a promising strategy. However, existing work has been limited to probing pre-trained LLMs using relatively simple zero-shot strategies. We focus in particular on the task of ranking entities according to a given conceptual space dimension. Unfortunately, we cannot directly fine-tune LLMs on this task, because ground truth rankings for conceptual space dimensions are rare. We therefore use more readily available features as training data and analyse whether the ranking capabilities of the resulting models transfer to perceptual and subjective features. We find that this is indeed the case, to some extent, but having perceptual and subjective features in the training data seems essential for achieving the best results. We furthermore find that pointwise ranking strategies are competitive against pairwise approaches, in defiance of common wisdom.
This study explores the realm of knowledge-base question answering (KBQA). KBQA is considered a challenging task, particularly in parsing intricate questions into executable logical forms. Traditional semantic parsing (SP)-based methods require extensive data annotations, which result in significant costs. Recently, the advent of few-shot in-context learning, powered by large language models (LLMs), has showcased promising capabilities. Yet, fully leveraging LLMs to parse questions into logical forms in low-resource scenarios poses a substantial challenge. To tackle these hurdles, we introduce Interactive-KBQA, a framework designed to generate logical forms through direct interaction with knowledge bases (KBs). Within this framework, we have developed three generic APIs for KB interaction. For each category of complex question, we devised exemplars to guide LLMs through the reasoning processes. Our method achieves competitive results on the WebQuestionsSP, ComplexWebQuestions, KQA Pro, and MetaQA datasets with a minimal number of examples (shots). Importantly, our approach supports manual intervention, allowing for the iterative refinement of LLM outputs. By annotating a dataset with step-wise reasoning processes, we showcase our model's adaptability and highlight its potential for contributing significant enhancements to the field.
Chain-of-thought (CoT) has emerged as a groundbreaking tool in NLP, notably for its efficacy in complex reasoning tasks, such as mathematical proofs. However, its application in code generation faces a distinct challenge, i.e., although the code generated with CoT reasoning is logically correct, it faces the problem of syntax error (e.g., invalid syntax error report) during code execution, which causes the CoT result's pass@1 in HumanEval even lower than the zero-shot result. In this paper, we present Code Chain-of-Thought (CodeCoT) that integrates CoT with a self-examination process for code generation. CodeCoT begins with the LLMs using CoT for initial code development to ensure the generated code follows the correct logic flow. Then, CodeCoT will generate test cases to validate whether the code has syntax errors during the execution. CodeCoT then employs a self-examination phase, in which the generated code is executed against these test cases in the local environment. If the local environment raises error information (e.g., invalid syntax error), CodeCoT will iteratively refine the code based on the feedback information. Within this loop, CodeCoT can make sure their generated codes not only follow the logic flow of the code description, but the syntax error will also be addressed with the self-examination process. Our evaluation results reveal that CodeCoT improves the effectiveness of code generation. For example, CodeCoT increases pass@1 from 75.6% to 79.3% for the HumanEval dataset.