In this paper, we develop a Monte Carlo algorithm named the Frozen Gaussian Sampling (FGS) to solve the semiclassical Schr\"odinger equation based on the frozen Gaussian approximation. Due to the highly oscillatory structure of the wave function, traditional mesh-based algorithms suffer from "the curse of dimensionality", which gives rise to more severe computational burden when the semiclassical parameter \(\ep\) is small. The Frozen Gaussian sampling outperforms the existing algorithms in that it is mesh-free in computing the physical observables and is suitable for high dimensional problems. In this work, we provide detailed procedures to implement the FGS for both Gaussian and WKB initial data cases, where the sampling strategies on the phase space balance the need of variance reduction and sampling convenience. Moreover, we rigorously prove that, to reach a certain accuracy, the number of samples needed for the FGS is independent of the scaling parameter \(\ep\). Furthermore, the complexity of the FGS algorithm is of a sublinear scaling with respect to the microscopic degrees of freedom and, in particular, is insensitive to the dimension number. The performance of the FGS is validated through several typical numerical experiments, including simulating scattering by the barrier potential, formation of the caustics and computing the high-dimensional physical observables without mesh.
Given their ability to effectively learn non-linear mappings and perform fast inference, deep neural networks (NNs) have been proposed as a viable alternative to traditional simulation-driven approaches for solving high-dimensional eigenvalue equations (HDEs), which are the foundation for many scientific applications. Unfortunately, for the learned models in these scientific applications to achieve generalization, a large, diverse, and preferably annotated dataset is typically needed and is computationally expensive to obtain. Furthermore, the learned models tend to be memory- and compute-intensive primarily due to the size of the output layer. While generalization, especially extrapolation, with scarce data has been attempted by imposing physical constraints in the form of physics loss, the problem of model scalability has remained. In this paper, we alleviate the compute bottleneck in the output layer by using physics knowledge to decompose the complex regression task of predicting the high-dimensional eigenvectors into multiple simpler sub-tasks, each of which are learned by a simple "expert" network. We call the resulting architecture of specialized experts Physics-Guided Mixture-of-Experts (PG-MoE). We demonstrate the efficacy of such physics-guided problem decomposition for the case of the Schr\"{o}dinger's Equation in Quantum Mechanics. Our proposed PG-MoE model predicts the ground-state solution, i.e., the eigenvector that corresponds to the smallest possible eigenvalue. The model is 150x smaller than the network trained to learn the complex task while being competitive in generalization. To improve the generalization of the PG-MoE, we also employ a physics-guided loss function based on variational energy, which by quantum mechanics principles is minimized iff the output is the ground-state solution.
Reliable probability estimation is of crucial importance in many real-world applications where there is inherent uncertainty, such as weather forecasting, medical prognosis, or collision avoidance in autonomous vehicles. Probability-estimation models are trained on observed outcomes (e.g. whether it has rained or not, or whether a patient has died or not), because the ground-truth probabilities of the events of interest are typically unknown. The problem is therefore analogous to binary classification, with the important difference that the objective is to estimate probabilities rather than predicting the specific outcome. The goal of this work is to investigate probability estimation from high-dimensional data using deep neural networks. There exist several methods to improve the probabilities generated by these models but they mostly focus on classification problems where the probabilities are related to model uncertainty. In the case of problems with inherent uncertainty, it is challenging to evaluate performance without access to ground-truth probabilities. To address this, we build a synthetic dataset to study and compare different computable metrics. We evaluate existing methods on the synthetic data as well as on three real-world probability estimation tasks, all of which involve inherent uncertainty. We also give a theoretical analysis of a model for high-dimensional probability estimation which reproduces several of the phenomena evinced in our experiments. Finally, we propose a new method for probability estimation using neural networks, which modifies the training process to promote output probabilities that are consistent with empirical probabilities computed from the data. The method outperforms existing approaches on most metrics on the simulated as well as real-world data.
We study the proximal sampler of Lee, Shen, and Tian (2021) and obtain new convergence guarantees under weaker assumptions than strong log-concavity: namely, our results hold for (1) weakly log-concave targets, and (2) targets satisfying isoperimetric assumptions which allow for non-log-concavity. We demonstrate our results by obtaining new state-of-the-art sampling guarantees for several classes of target distributions. We also strengthen the connection between the proximal sampler and the proximal method in optimization by interpreting the proximal sampler as an entropically regularized Wasserstein proximal method, and the proximal point method as the limit of the proximal sampler with vanishing noise.
A new clustering accuracy measure is proposed to determine the unknown number of clusters and to assess the quality of clustering of a data set given in any dimensional space. Our validity index applies the classical nonparametric univariate kernel density estimation method to the interpoint distances computed between the members of data. Being based on interpoint distances, it is free of the curse of dimensionality and therefore efficiently computable for high-dimensional situations where the number of study variables can be larger than the sample size. The proposed measure is compatible with any clustering algorithm and with every kind of data set where the interpoint distance measure can be defined to have a density function. Simulation study proves its superiority over widely used cluster validity indices like the average silhouette width and the Dunn index, whereas its applicability is shown with respect to a high-dimensional Biostatistical study of Alon data set and a large Astrostatistical application of time series with light curves of new variable stars.
Smooth minimax games often proceed by simultaneous or alternating gradient updates. Although algorithms with alternating updates are commonly used in practice, the majority of existing theoretical analyses focus on simultaneous algorithms for convenience of analysis. In this paper, we study alternating gradient descent-ascent (Alt-GDA) in minimax games and show that Alt-GDA is superior to its simultaneous counterpart~(Sim-GDA) in many settings. We prove that Alt-GDA achieves a near-optimal local convergence rate for strongly convex-strongly concave (SCSC) problems while Sim-GDA converges at a much slower rate. To our knowledge, this is the \emph{first} result of any setting showing that Alt-GDA converges faster than Sim-GDA by more than a constant. We further adapt the theory of integral quadratic constraints (IQC) and show that Alt-GDA attains the same rate \emph{globally} for a subclass of SCSC minimax problems. Empirically, we demonstrate that alternating updates speed up GAN training significantly and the use of optimism only helps for simultaneous algorithms.
Stochastic approximation algorithms are iterative procedures which are used to approximate a target value in an environment where the target is unknown and direct observations are corrupted by noise. These algorithms are useful, for instance, for root-finding and function minimization when the target function or model is not directly known. Originally introduced in a 1951 paper by Robbins and Monro, the field of Stochastic approximation has grown enormously and has come to influence application domains from adaptive signal processing to artificial intelligence. As an example, the Stochastic Gradient Descent algorithm which is ubiquitous in various subdomains of Machine Learning is based on stochastic approximation theory. In this paper, we give a formal proof (in the Coq proof assistant) of a general convergence theorem due to Aryeh Dvoretzky, which implies the convergence of important classical methods such as the Robbins-Monro and the Kiefer-Wolfowitz algorithms. In the process, we build a comprehensive Coq library of measure-theoretic probability theory and stochastic processes.
We develop a novel a posteriori error estimator for the L2 error committed by the finite element discretization of the solution of the fractional Laplacian. Our a posteriori error estimator takes advantage of the semi-discretization scheme using a rational approximation which allows to reformulate the fractional problem into a family of non-fractional parametric problems. The estimator involves applying the implicit Bank-Weiser error estimation strategy to each parametric non-fractional problem and reconstructing the fractional error through the same rational approximation used to compute the solution to the original fractional problem. We provide several numerical examples in both two and three-dimensions demonstrating the effectivity of our estimator for varying fractional powers and its ability to drive an adaptive mesh refinement strategy.
In this work we explore a new framework for approximate Bayesian inference in large datasets based on stochastic control (i.e. Schr\"odinger bridges). We advocate stochastic control as a finite time and low variance alternative to popular steady-state methods such as stochastic gradient Langevin dynamics (SGLD). Furthermore, we discuss and adapt the existing theoretical guarantees of this framework and establish connections to already existing VI routines in SDE-based models.
We propose a new framework to reconstruct a stochastic process $\left\{\mathbb{P}_{t}: t \in[0, T]\right\}$ using only samples from its marginal distributions, observed at start and end times $0$ and $T$. This reconstruction is useful to infer population dynamics, a crucial challenge, e.g., when modeling the time-evolution of cell populations from single-cell sequencing data. Our general framework encompasses the more specific Schr\"odinger bridge (SB) problem, where $\mathbb{P}_{t}$ represents the evolution of a thermodynamic system at almost equilibrium. Estimating such bridges is notoriously difficult, motivating our proposal for a novel adaptive scheme called the GSBflow. Our goal is to rely on Gaussian approximations of the data to provide the reference stochastic process needed to estimate SB. To that end, we solve the \acs{SB} problem with Gaussian marginals, for which we provide, as a central contribution, a closed-form solution and SDE-representation. We use these formulas to define the reference process used to estimate more complex SBs, and show that this does indeed help with its numerical solution. We obtain notable improvements when reconstructing both synthetic processes and single-cell genomics experiments.
In this work, we examine sampling problems with non-smooth potentials. We propose a novel Markov chain Monte Carlo algorithm for sampling from non-smooth potentials. We provide a non-asymptotical analysis of our algorithm and establish a polynomial-time complexity $\tilde {\cal O}(d\varepsilon^{-1})$ to obtain $\varepsilon$ total variation distance to the target density, better than most existing results under the same assumptions. Our method is based on the proximal bundle method and an alternating sampling framework. This framework requires the so-called restricted Gaussian oracle, which can be viewed as a sampling counterpart of the proximal mapping in convex optimization. One key contribution of this work is a fast algorithm that realizes the restricted Gaussian oracle for any convex non-smooth potential with bounded Lipschitz constant.