亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The generalized g-formula can be used to estimate the probability of survival under a sustained treatment strategy. When treatment strategies are deterministic, estimators derived from the so-called efficient influence function (EIF) for the g-formula will be doubly robust to model misspecification. In recent years, several practical applications have motivated estimation of the g-formula under non-deterministic treatment strategies where treatment assignment at each time point depends on the observed treatment process. In this case, EIF-based estimators may or may not be doubly robust. In this paper, we provide sufficient conditions to ensure existence of doubly robust estimators for intervention treatment distributions that depend on the observed treatment process for point treatment interventions, and give a class of intervention treatment distributions dependent on the observed treatment process that guarantee model doubly and multiply robust estimators in longitudinal settings. Motivated by an application to pre-exposure prophylaxis (PrEP) initiation studies, we propose a new treatment intervention dependent on the observed treatment process. We show there exist 1) estimators that are doubly and multiply robust to model misspecification, and 2) estimators that when used with machine learning algorithms can attain fast convergence rates for our proposed intervention. Theoretical results are confirmed via simulation studies.

相關內容

We consider continuous-time survival or more general event-history settings, where the aim is to infer the causal effect of a time-dependent treatment process. This is formalised as the effect on the outcome event of a (possibly hypothetical) intervention on the intensity of the treatment process, i.e. a stochastic intervention. To establish whether valid inference about the interventional situation can be drawn from typical observational, i.e. non-experimental, data we propose graphical rules indicating whether the observed information is sufficient to identify the desired causal effect by suitable re-weighting. In analogy to the well-known causal directed acyclic graphs, the corresponding dynamic graphs combine causal semantics with local independence models for multivariate counting processes. Importantly, we highlight that causal inference from censored data requires structural assumptions on the censoring process beyond the usual independent censoring assumption, which can be represented and verified graphically. Our results establish general non-parametric identifiability and do not rely on particular survival models. We illustrate our proposal with a data example on HPV-testing for cervical cancer screening, where the desired effect is estimated by re-weighted cumulative incidence curves.

We consider the problem of high-dimensional Ising model selection using neighborhood-based least absolute shrinkage and selection operator (Lasso). It is rigorously proved that under some mild coherence conditions on the population covariance matrix of the Ising model, consistent model selection can be achieved with sample sizes $n=\Omega{(d^3\log{p})}$ for any tree-like graph in the paramagnetic phase, where $p$ is the number of variables and $d$ is the maximum node degree. The obtained sufficient conditions for consistent model selection with Lasso are the same in the scaling of the sample complexity as that of $\ell_1$-regularized logistic regression.

Decision curve analysis can be used to determine whether a personalized model for treatment benefit would lead to better clinical decisions. Decision curve analysis methods have been described to estimate treatment benefit using data from a single RCT. Our main objective is to extend the decision curve analysis methodology to the scenario where several treatment options exist and evidence about their effects comes from a set of trials, synthesized using network meta-analysis (NMA). We describe the steps needed to estimate the net benefit of a prediction model using evidence from studies synthesized in an NMA. We show how to compare personalized versus one-size-fit-all treatment decision-making strategies, like "treat none" or "treat all patients with a specific treatment" strategies. The net benefit per strategy can then be plotted for a plausible range of threshold probabilities to reveal the most clinically useful strategy. We applied our methodology to an NMA prediction model for relapsing-remitting multiple sclerosis, which can be used to choose between Natalizumab, Dimethyl Fumarate, Glatiramer Acetate, and placebo. We illustrated the extended decision curve analysis methodology using several threshold values combinations for each available treatment. For the examined threshold values, the "treat patients according to the prediction model" strategy performs either better than or close to the one-size-fit-all treatment strategies. However, even small differences may be important in clinical decision-making. As the advantage of the personalized model was not consistent across all thresholds, an improved model may be needed before advocating its applicability for decision-making. This novel extension of decision curve analysis can be applied to NMA based prediction models to evaluate their use to aid treatment decision-making.

Missing data is a systemic problem in practical scenarios that causes noise and bias when estimating treatment effects. This makes treatment effect estimation from data with missingness a particularly tricky endeavour. A key reason for this is that standard assumptions on missingness are rendered insufficient due to the presence of an additional variable, treatment, besides the individual and the outcome. Having a treatment variable introduces additional complexity with respect to why some variables are missing that is not fully explored by previous work. In our work we identify a new missingness mechanism, which we term mixed confounded missingness (MCM), where some missingness determines treatment selection and other missingness is determined by treatment selection. Given MCM, we show that naively imputing all data leads to poor performing treatment effects models, as the act of imputation effectively removes information necessary to provide unbiased estimates. However, no imputation at all also leads to biased estimates, as missingness determined by treatment divides the population in distinct subpopulations, where estimates across these populations will be biased. Our solution is selective imputation, where we use insights from MCM to inform precisely which variables should be imputed and which should not. We empirically demonstrate how various learners benefit from selective imputation compared to other solutions for missing data.

We consider a problem of manifold estimation from noisy observations. Many manifold learning procedures locally approximate a manifold by a weighted average over a small neighborhood. However, in the presence of large noise, the assigned weights become so corrupted that the averaged estimate shows very poor performance. We suggest a structure-adaptive procedure, which simultaneously reconstructs a smooth manifold and estimates projections of the point cloud onto this manifold. The proposed approach iteratively refines the weights on each step, using the structural information obtained at previous steps. After several iterations, we obtain nearly "oracle" weights, so that the final estimates are nearly efficient even in the presence of relatively large noise. In our theoretical study, we establish tight lower and upper bounds proving asymptotic optimality of the method for manifold estimation under the Hausdorff loss, provided that the noise degrades to zero fast enough.

Causal inference methods can be applied to estimate the effect of a point exposure or treatment on an outcome of interest using data from observational studies. When the outcome of interest is a count, the estimand is often the causal mean ratio, i.e., the ratio of the counterfactual mean count under exposure to the counterfactual mean count under no exposure. This paper considers estimators of the causal mean ratio based on inverse probability of treatment weights, the parametric g-formula, and doubly robust estimation, each of which can account for overdispersion, zero-inflation, and heaping in the measured outcome. Methods are compared in simulations and are applied to data from the Women's Interagency HIV Study to estimate the effect of incarceration in the past six months on two count outcomes in the subsequent six months: the number of sexual partners and the number of cigarettes smoked per day.

When the distribution of treatment effect modifiers differs between the trial sample and target population, inverse probability weighting (IPSW) can be applied to achieve an unbiased estimate of the population average treatment effect in the target population. The statistical validity of IPSW is threatened when there are missing data in the target population, including potential missingness in trial sample. However, missing data methods have not been adequately discussed in the current literature. We conducted a set of simulation studies to determine how to apply multiple imputation (MI) in the context of IPSW. We specifically addressed questions such as which variables to include in the imputation model and whether they should come from trial or non-trial portion of the target population. Based on our findings, we recommend including all potential effect modifiers and trial indicator from both trial and non-trial populations, as well as treatment and outcome variables from trial sample in the imputation model as main effects. Additionally, we have illustrated ideas by transporting findings from the Frequent Hemodialysis Network (FHN) Daily Trial to the United States Renal Stage System (USRDS) population.

Latent class analysis (LCA) is a useful tool to investigate the heterogeneity of a disease population with time-to-event data. We propose a new method based on non-parametric maximum likelihood estimator (NPMLE), which facilitates theoretically validated inference procedure for covariate effects and cumulative hazard functions. We assess the proposed method via extensive simulation studies and demonstrate improved predictive performance over standard Cox regression model. We further illustrate the practical utility of the proposed method through an application to a mild cognitive impairment (MCI) cohort dataset.

While the {estimation} of risk is an important question in the daily business of banking and insurance, many existing plug-in estimation procedures suffer from an unnecessary bias. This often leads to the underestimation of risk and negatively impacts backtesting results, especially in small sample cases. In this article we show that the link between estimation bias and backtesting can be traced back to the dual relationship between risk measures and the corresponding performance measures, and discuss this in reference to value-at-risk, expected shortfall and expectile value-at-risk. Motivated by the consistent underestimation of risk by plug-in procedures, we propose a new algorithm for bias correction and show how to apply it for generalized Pareto distributions to the i.i.d. setting and to a GARCH(1,1) time series. In particular, we show that the application of our algorithm leads to gain in efficiency when heavy tails or heteroscedasticity exists in the data.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

北京阿比特科技有限公司