In forthcoming AI-assisted 6G networks, integrating semantic, pragmatic, and goal-oriented communication strategies becomes imperative. This integration will enable sensing, transmission, and processing of exclusively pertinent task data, ensuring conveyed information possesses understandable, pragmatic semantic significance, aligning with destination needs and goals. Without doubt, no communication is error free. Within this context, besides errors stemming from typical wireless communication dynamics, potential distortions between transmitter-intended and receiver-interpreted meanings can emerge due to limitations in semantic processing capabilities, as well as language and knowledge representation disparities between transmitters and receivers. The main contribution of this paper is two-fold. First, it proposes and details a novel mathematical modeling of errors stemming from language mismatches at both semantic and effectiveness levels. Second, it provides a novel algorithmic solution to counteract these types of errors which leverages optimal transport theory. Our numerical results show the potential of the proposed mechanism to compensate for language mismatches, thereby enhancing the attainability of reliable communication under noisy communication environments.
Programming recurrent spiking neural networks (RSNNs) to robustly perform multi-timescale computation remains a difficult challenge. To address this, we describe a single-shot weight learning scheme to embed robust multi-timescale dynamics into attractor-based RSNNs, by exploiting the properties of high-dimensional distributed representations. We embed finite state machines into the RSNN dynamics by superimposing a symmetric autoassociative weight matrix and asymmetric transition terms, which are each formed by the vector binding of an input and heteroassociative outer-products between states. Our approach is validated through simulations with highly non-ideal weights; an experimental closed-loop memristive hardware setup; and on Loihi 2, where it scales seamlessly to large state machines. This work introduces a scalable approach to embed robust symbolic computation through recurrent dynamics into neuromorphic hardware, without requiring parameter fine-tuning or significant platform-specific optimisation. Moreover, it demonstrates that distributed symbolic representations serve as a highly capable representation-invariant language for cognitive algorithms in neuromorphic hardware.
In-loop filtering (ILF) is a key technology for removing the artifacts in image/video coding standards. Recently, neural network-based in-loop filtering methods achieve remarkable coding gains beyond the capability of advanced video coding standards, which becomes a powerful coding tool candidate for future video coding standards. However, the utilization of deep neural networks brings heavy time and computational complexity, and high demands of high-performance hardware, which is challenging to apply to the general uses of coding scene. To address this limitation, inspired by explorations in image restoration, we propose an efficient and practical in-loop filtering scheme by adopting the Look-up Table (LUT). We train the DNN of in-loop filtering within a fixed filtering reference range, and cache the output values of the DNN into a LUT via traversing all possible inputs. At testing time in the coding process, the filtered pixel is generated by locating input pixels (to-be-filtered pixel with reference pixels) and interpolating cached filtered pixel values. To further enable the large filtering reference range with the limited storage cost of LUT, we introduce the enhanced indexing mechanism in the filtering process, and clipping/finetuning mechanism in the training. The proposed method is implemented into the Versatile Video Coding (VVC) reference software, VTM-11.0. Experimental results show that the ultrafast, very fast, and fast mode of the proposed method achieves on average 0.13%/0.34%/0.51%, and 0.10%/0.27%/0.39% BD-rate reduction, under the all intra (AI) and random access (RA) configurations. Especially, our method has friendly time and computational complexity, only 101%/102%-104%/108% time increase with 0.13-0.93 kMACs/pixel, and only 164-1148 KB storage cost for a single model. Our solution may shed light on the journey of practical neural network-based coding tool evolution.
Hybrid intelligence aims to enhance decision-making, problem-solving, and overall system performance by combining the strengths of both, human cognitive abilities and artificial intelligence. With the rise of Large Language Models (LLM), progressively participating as smart agents to accelerate machine learning development, Hybrid Intelligence is becoming an increasingly important topic for effective interaction between humans and machines. This paper presents an approach to leverage Hybrid Intelligence towards sustainable and energy-aware machine learning. When developing machine learning models, final model performance commonly rules the optimization process while the efficiency of the process itself is often neglected. Moreover, in recent times, energy efficiency has become equally crucial due to the significant environmental impact of complex and large-scale computational processes. The contribution of this work covers the interactive inclusion of secondary knowledge sources through Human-in-the-loop (HITL) and LLM agents to stress out and further resolve inefficiencies in the machine learning development process.
Smart contract transactions associated with security attacks often exhibit distinct behavioral patterns compared with historical benign transactions before the attacking events. While many runtime monitoring and guarding mechanisms have been proposed to validate invariants and stop anomalous transactions on the fly, the empirical effectiveness of the invariants used remains largely unexplored. In this paper, we studied 23 prevalent invariants of 8 categories, which are either deployed in high-profile protocols or endorsed by leading auditing firms and security experts. Using these well-established invariants as templates, we developed a tool Trace2Inv which dynamically generates new invariants customized for a given contract based on its historical transaction data. We evaluated Trace2Inv on 42 smart contracts that fell victim to 27 distinct exploits on the Ethereum blockchain. Our findings reveal that the most effective invariant guard alone can successfully block 18 of the 27 identified exploits with minimal gas overhead. Our analysis also shows that most of the invariants remain effective even when the experienced attackers attempt to bypass them. Additionally, we studied the possibility of combining multiple invariant guards, resulting in blocking up to 23 of the 27 benchmark exploits and achieving false positive rates as low as 0.32%. Trace2Inv outperforms current state-of-the-art works on smart contract invariant mining and transaction attack detection in terms of both practicality and accuracy. Though Trace2Inv is not primarily designed for transaction attack detection, it surprisingly found two previously unreported exploit transactions, earlier than any reported exploit transactions against the same victim contracts.
Several applications in time series forecasting require predicting multiple steps ahead. Despite the vast amount of literature in the topic, both classical and recent deep learning based approaches have mostly focused on minimising performance averaged over the predicted window. We observe that this can lead to disparate distributions of errors across forecasting steps, especially for recent transformer architectures trained on popular forecasting benchmarks. That is, optimising performance on average can lead to undesirably large errors at specific time-steps. In this work, we present a Constrained Learning approach for long-term time series forecasting that aims to find the best model in terms of average performance that respects a user-defined upper bound on the loss at each time-step. We call our approach loss shaping constraints because it imposes constraints on the loss at each time step, and leverage recent duality results to show that despite its non-convexity, the resulting problem has a bounded duality gap. We propose a practical Primal-Dual algorithm to tackle it, and demonstrate that the proposed approach exhibits competitive average performance in time series forecasting benchmarks, while shaping the distribution of errors across the predicted window.
Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.
The military is investigating methods to improve communication and agility in its multi-domain operations (MDO). Nascent popularity of Internet of Things (IoT) has gained traction in public and government domains. Its usage in MDO may revolutionize future battlefields and may enable strategic advantage. While this technology offers leverage to military capabilities, it comes with challenges where one is the uncertainty and associated risk. A key question is how can these uncertainties be addressed. Recently published studies proposed information camouflage to transform information from one data domain to another. As this is comparatively a new approach, we investigate challenges of such transformations and how these associated uncertainties can be detected and addressed, specifically unknown-unknowns to improve decision-making.
Unsupervised domain adaptation (UDA) methods for person re-identification (re-ID) aim at transferring re-ID knowledge from labeled source data to unlabeled target data. Although achieving great success, most of them only use limited data from a single-source domain for model pre-training, making the rich labeled data insufficiently exploited. To make full use of the valuable labeled data, we introduce the multi-source concept into UDA person re-ID field, where multiple source datasets are used during training. However, because of domain gaps, simply combining different datasets only brings limited improvement. In this paper, we try to address this problem from two perspectives, \ie{} domain-specific view and domain-fusion view. Two constructive modules are proposed, and they are compatible with each other. First, a rectification domain-specific batch normalization (RDSBN) module is explored to simultaneously reduce domain-specific characteristics and increase the distinctiveness of person features. Second, a graph convolutional network (GCN) based multi-domain information fusion (MDIF) module is developed, which minimizes domain distances by fusing features of different domains. The proposed method outperforms state-of-the-art UDA person re-ID methods by a large margin, and even achieves comparable performance to the supervised approaches without any post-processing techniques.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.