亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of robustly detecting changepoints in the variability of a sequence of independent multivariate functions. We develop a novel changepoint procedure, called the functional Kruskal--Wallis for covariance (FKWC) changepoint procedure, based on rank statistics and multivariate functional data depth. The FKWC changepoint procedure allows the user to test for at most one changepoint (AMOC) or an epidemic period, or to estimate the number and locations of an unknown amount of changepoints in the data. We show that when the ``signal-to-noise'' ratio is bounded below, the changepoint estimates produced by the FKWC procedure attain the minimax localization rate for detecting general changes in distribution in the univariate setting (Theorem 1). We also provide the behavior of the proposed test statistics for the AMOC and epidemic setting under the null hypothesis (Theorem 2) and, as a simple consequence of our main result, these tests are consistent (Corollary 1). In simulation, we show that our method is particularly robust when compared to similar changepoint methods. We present an application of the FKWC procedure to intraday asset returns and f-MRI scans. As a by-product of Theorem 1, we provide a concentration result for integrated functional depth functions (Lemma 2), which may be of general interest.

相關內容

This contribution introduces a model order reduction approach for an advection-reaction problem with a parametrized reaction function. The underlying discretization uses an ultraweak formulation with an $L^2$-like trial space and an 'optimal' test space as introduced by Demkowicz et al. This ensures the stability of the discretization and in addition allows for a symmetric reformulation of the problem in terms of a dual solution which can also be interpreted as the normal equations of an adjoint least-squares problem. Classic model order reduction techniques can then be applied to the space of dual solutions which also immediately gives a reduced primal space. We show that the necessary computations do not require the reconstruction of any primal solutions and can instead be performed entirely on the space of dual solutions. We prove exponential convergence of the Kolmogorov $N$-width and show that a greedy algorithm produces quasi-optimal approximation spaces for both the primal and the dual solution space. Numerical experiments based on the benchmark problem of a catalytic filter confirm the applicability of the proposed method.

Collecting large quantities of high-quality data can be prohibitively expensive or impractical, and a bottleneck in machine learning. One may instead augment a small set of $n$ data points from the target distribution with data from more accessible sources, e.g. data collected under different circumstances or synthesized by generative models. We refer to such data as `surrogate data.' We introduce a weighted empirical risk minimization (ERM) approach for integrating surrogate data into training. We analyze mathematically this method under several classical statistical models, and validate our findings empirically on datasets from different domains. Our main findings are: $(i)$ Integrating surrogate data can significantly reduce the test error on the original distribution. Surprisingly, this can happen even when the surrogate data is unrelated to the original ones. We trace back this behavior to the classical Stein's paradox. $(ii)$ In order to reap the benefit of surrogate data, it is crucial to use optimally weighted ERM. $(iii)$ The test error of models trained on mixtures of real and surrogate data is approximately described by a scaling law. This scaling law can be used to predict the optimal weighting scheme, and to choose the amount of surrogate data to add.

An essential problem in statistics and machine learning is the estimation of expectations involving PDFs with intractable normalizing constants. The self-normalized importance sampling (SNIS) estimator, which normalizes the IS weights, has become the standard approach due to its simplicity. However, the SNIS has been shown to exhibit high variance in challenging estimation problems, e.g, involving rare events or posterior predictive distributions in Bayesian statistics. Further, most of the state-of-the-art adaptive importance sampling (AIS) methods adapt the proposal as if the weights had not been normalized. In this paper, we propose a framework that considers the original task as estimation of a ratio of two integrals. In our new formulation, we obtain samples from a joint proposal distribution in an extended space, with two of its marginals playing the role of proposals used to estimate each integral. Importantly, the framework allows us to induce and control a dependency between both estimators. We propose a construction of the joint proposal that decomposes in two (multivariate) marginals and a coupling. This leads to a two-stage framework suitable to be integrated with existing or new AIS and/or variational inference (VI) algorithms. The marginals are adapted in the first stage, while the coupling can be chosen and adapted in the second stage. We show in several examples the benefits of the proposed methodology, including an application to Bayesian prediction with misspecified models.

We connect the mixing behaviour of random walks over a graph to the power of the local-consistency algorithm for the solution of the corresponding constraint satisfaction problem (CSP). We extend this connection to arbitrary CSPs and their promise variant. In this way, we establish a linear-level (and, thus, optimal) lower bound against the local-consistency algorithm applied to the class of aperiodic promise CSPs. The proof is based on a combination of the probabilistic method for random Erd\H{o}s-R\'enyi hypergraphs and a structural result on the number of fibers (i.e., long chains of hyperedges) in sparse hypergraphs of large girth. As a corollary, we completely classify the power of local consistency for the approximate graph homomorphism problem by establishing that, in the nontrivial cases, the problem has linear width.

Blocking, a special case of rerandomization, is routinely implemented in the design stage of randomized experiments to balance the baseline covariates. This study proposes a regression adjustment method based on the least absolute shrinkage and selection operator (Lasso) to efficiently estimate the average treatment effect in randomized block experiments with high-dimensional covariates. We derive the asymptotic properties of the proposed estimator and outline the conditions under which this estimator is more efficient than the unadjusted one. We provide a conservative variance estimator to facilitate valid inferences. Our framework allows one treated or control unit in some blocks and heterogeneous propensity scores across blocks, thus including paired experiments and finely stratified experiments as special cases. We further accommodate rerandomized experiments and a combination of blocking and rerandomization. Moreover, our analysis allows both the number of blocks and block sizes to tend to infinity, as well as heterogeneous treatment effects across blocks without assuming a true outcome data-generating model. Simulation studies and two real-data analyses demonstrate the advantages of the proposed method.

To analyze the topological properties of the given discrete data, one needs to consider a continuous transform called filtration. Persistent homology serves as a tool to track changes of homology in the filtration. The outcome of the topological analysis of data varies depending on the choice of filtration, making the selection of filtration crucial. Filtration learning is an attempt to find an optimal filtration that minimizes the loss function. Exact Multi-parameter Persistent Homology (EMPH) has been recently proposed, particularly for topological time-series analysis, that utilizes the exact formula of rank invariant instead of calculating it. In this paper, we propose a framework for filtration learning of EMPH. We formulate an optimization problem and propose an algorithm for solving the problem. We then apply the proposed algorithm to several classification problems. Particularly, we derive the exact formula of the gradient of the loss function with respect to the filtration parameter, which makes it possible to directly update the filtration without using automatic differentiation, significantly enhancing the learning process.

In the study of extremes, the presence of asymptotic independence signifies that extreme events across multiple variables are probably less likely to occur together. Although well-understood in a bivariate context, the concept remains relatively unexplored when addressing the nuances of joint occurrence of extremes in higher dimensions. In this paper, we propose a notion of mutual asymptotic independence to capture the behavior of joint extremes in dimensions larger than two and contrast it with the classical notion of (pairwise) asymptotic independence. Furthermore, we define $k$-wise asymptotic independence which lies in between pairwise and mutual asymptotic independence. The concepts are compared using examples of Archimedean, Gaussian and Marshall-Olkin copulas among others. Notably, for the popular Gaussian copula, we provide explicit conditions on the correlation matrix for mutual asymptotic independence to hold; moreover, we are able to compute exact tail orders for various tail events.

When the target of inference is a real-valued function of probability parameters in the k-sample multinomial problem, variance estimation may be challenging. In small samples, methods like the nonparametric bootstrap or delta method may perform poorly. We propose a novel general method in this setting for computing exact p-values and confidence intervals which means that type I error rates are correctly bounded and confidence intervals have at least nominal coverage at all sample sizes. Our method is applicable to any real-valued function of multinomial probabilities, accommodating an arbitrary number of samples with varying category counts. We describe the method and provide an implementation of it in R, with some computational optimization to ensure broad applicability. Simulations demonstrate our method's ability to maintain correct coverage rates in settings where the nonparametric bootstrap fails.

Confidence assessments of semantic segmentation algorithms in remote sensing are important. It is a desirable property of models to a priori know if they produce an incorrect output. Evaluations of the confidence assigned to the estimates of models for the task of classification in Earth Observation (EO) are crucial as they can be used to achieve improved semantic segmentation performance and prevent high error rates during inference and deployment. The model we develop, the Confidence Assessments of classification algorithms for Semantic segmentation (CAS) model, performs confidence evaluations at both the segment and pixel levels, and outputs both labels and confidence. The outcome of this work has important applications. The main application is the evaluation of EO Foundation Models on semantic segmentation downstream tasks, in particular land cover classification using satellite Copernicus Sentinel-2 data. The evaluation shows that the proposed model is effective and outperforms other alternative baseline models.

The knockoffs is a recently proposed powerful framework that effectively controls the false discovery rate (FDR) for variable selection. However, none of the existing knockoff solutions are directly suited to handle multivariate or high-dimensional functional data, which has become increasingly prevalent in various scientific applications. In this paper, we propose a novel functional model-X knockoffs selection framework tailored to sparse high-dimensional functional models, and show that our proposal can achieve the effective FDR control for any sample size. Furthermore, we illustrate the proposed functional model-X knockoffs selection procedure along with the associated theoretical guarantees for both FDR control and asymptotic power using examples of commonly adopted functional linear additive regression models and the functional graphical model. In the construction of functional knockoffs, we integrate essential components including the correlation operator matrix, the Karhunen-Lo\`eve expansion, and semidefinite programming, and develop executable algorithms. We demonstrate the superiority of our proposed methods over the competitors through both extensive simulations and the analysis of two brain imaging datasets.

北京阿比特科技有限公司