亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study a game played between advertisers in an online ad platform. The platform sells ad impressions by first-price auction and provides autobidding algorithms that optimize bids on each advertiser's behalf. Each advertiser strategically declares a budget constraint (and possibly a maximum bid) to their autobidder. The chosen constraints define an "inner" budget-pacing game for the autobidders, who compete to maximize the total value received subject to the constraints. Advertiser payoffs in the constraint-choosing "metagame" are determined by the equilibrium reached by the autobidders. Advertisers only specify budgets and linear values to their autobidders, but their true preferences can be more general: we assume only that they have weakly decreasing marginal value for clicks and weakly increasing marginal disutility for spending money. Our main result is that despite this gap between general preferences and simple autobidder constraints, the allocations at equilibrium are approximately efficient. Specifically, at any pure Nash equilibrium of the metagame, the resulting allocation obtains at least half of the liquid welfare of any allocation and this bound is tight. We also obtain a 4-approximation for any mixed Nash equilibrium, and this result extends also to Bayes-Nash equilibria. These results rely on the power to declare budgets: if advertisers can specify only a (linear) value per click but not a budget constraint, the approximation factor at equilibrium can be as bad as linear in the number of advertisers.

相關內容

This work develops a novel approach toward performance guarantees for all links in arbitrarily large wireless networks. It introduces a spatial network calculus, consisting of spatial regulation properties for stationary point processes and the first steps of a calculus for this regulation, which can be seen as an extension to space of the classical network calculus. Specifically, two classes of regulations are defined: one includes ball regulation and shot-noise regulation, which are shown to be equivalent and upper constraint interference; the other one includes void regulation, which lower constraints the signal power. These regulations are defined both in the strong and weak sense: the former requires the regulations to hold everywhere in space, whereas the latter only requires the regulations to hold as observed by a jointly stationary point process. Using this approach, we derive performance guarantees in device-to-device, ad hoc, and cellular networks under proper regulations. We give universal bounds on the SINR for all links, which gives link service guarantees based on information-theoretic achievability. They are combined with classical network calculus to provide end-to-end latency guarantees for all packets in wireless queuing networks. Such guarantees do not exist in networks that are not spatially regulated, e.g., Poisson networks.

There have been recent advances in the analysis and visualization of 3D symmetric tensor fields, with a focus on the robust extraction of tensor field topology. However, topological features such as degenerate curves and neutral surfaces do not live in isolation. Instead, they intriguingly interact with each other. In this paper, we introduce the notion of {\em topological graph} for 3D symmetric tensor fields to facilitate global topological analysis of such fields. The nodes of the graph include degenerate curves and regions bounded by neutral surfaces in the domain. The edges in the graph denote the adjacency information between the regions and degenerate curves. In addition, we observe that a degenerate curve can be a loop and even a knot and that two degenerate curves (whether in the same region or not) can form a link. We provide a definition and theoretical analysis of individual degenerate curves in order to help understand why knots and links may occur. Moreover, we differentiate between wedges and trisectors, thus making the analysis more detailed about degenerate curves. We incorporate this information into the topological graph. Such a graph can not only reveal the global structure in a 3D symmetric tensor field but also allow two symmetric tensor fields to be compared. We demonstrate our approach by applying it to solid mechanics and material science data sets.

This paper investigates the potential privacy risks associated with forecasting models, with specific emphasis on their application in the context of smart grids. While machine learning and deep learning algorithms offer valuable utility, concerns arise regarding their exposure of sensitive information. Previous studies have focused on classification models, overlooking risks associated with forecasting models. Deep learning based forecasting models, such as Long Short Term Memory (LSTM), play a crucial role in several applications including optimizing smart grid systems but also introduce privacy risks. Our study analyzes the ability of forecasting models to leak global properties and privacy threats in smart grid systems. We demonstrate that a black box access to an LSTM model can reveal a significant amount of information equivalent to having access to the data itself (with the difference being as low as 1% in Area Under the ROC Curve). This highlights the importance of protecting forecasting models at the same level as the data.

Offline Reinforcement Learning (RL) methods leverage previous experiences to learn better policies than the behavior policy used for data collection. In contrast to behavior cloning, which assumes the data is collected from expert demonstrations, offline RL can work with non-expert data and multimodal behavior policies. However, offline RL algorithms face challenges in handling distribution shifts and effectively representing policies due to the lack of online interaction during training. Prior work on offline RL uses conditional diffusion models to represent multimodal behavior in the dataset. Nevertheless, these methods are not tailored toward alleviating the out-of-distribution state generalization. We introduce a novel method named State Reconstruction for Diffusion Policies (SRDP), incorporating state reconstruction feature learning in the recent class of diffusion policies to address the out-of-distribution generalization problem. State reconstruction loss promotes generalizable representation learning of states to alleviate the distribution shift incurred by the out-of-distribution (OOD) states. We design a novel 2D Multimodal Contextual Bandit environment to illustrate the OOD generalization and faster convergence of SRDP compared to prior algorithms. In addition, we assess the performance of our model on D4RL continuous control benchmarks, namely the navigation of an 8-DoF ant and forward locomotion of half-cheetah, hopper, and walker2d, achieving state-of-the-art results.

We present a new, efficient procedure to establish Markov equivalence between directed graphs that may or may not contain cycles under the \textit{d}-separation criterion. It is based on the Cyclic Equivalence Theorem (CET) in the seminal works on cyclic models by Thomas Richardson in the mid '90s, but now rephrased from an ancestral perspective. The resulting characterization leads to a procedure for establishing Markov equivalence between graphs that no longer requires tests for d-separation, leading to a significantly reduced algorithmic complexity. The conceptually simplified characterization may help to reinvigorate theoretical research towards sound and complete cyclic discovery in the presence of latent confounders. This version includes a correction to rule (iv) in Theorem 1, and the subsequent adjustment in part 2 of Algorithm 2.

Blockchain technology is apt to facilitate the automation of multi-party cooperations among various players in a decentralized setting, especially in cases where trust among participants is limited. Transactions are stored in a ledger, a replica of which is retained by every node of the blockchain network. The operations saved thereby are thus publicly accessible. While this aspect enhances transparency, reliability, and persistence, it hinders the utilization of public blockchains for process automation as it violates typical confidentiality requirements in corporate settings. To overcome this issue, we propose our approach named Multi-Authority Approach to Transaction Systems for Interoperating Applications (MARTSIA). Based on Multi-Authority Attribute-Based Encryption (MA-ABE), MARTSIA enables read-access control over shared data at the level of message parts. User-defined policies determine whether an actor can interpret the publicly stored information or not, depending on the actor's attributes declared by a consortium of certifiers. Still, all nodes in the blockchain network can attest to the publication of the (encrypted) data. We provide a formal analysis of the security guarantees of MARTSIA, and illustrate the proof-of-concept implementation over multiple blockchain platforms. To demonstrate its interoperability, we showcase its usage in ensemble with a state-of-the-art blockchain-based engine for multi-party process execution, and three real-world decentralized applications in the context of NFT markets, supply chain, and retail.

We propose a novel methodology to define assistance systems that rely on information fusion to combine different sources of information while providing an assessment. The main contribution of this paper is providing a general framework for the fusion of n number of information sources using the evidence theory. The fusion provides a more robust prediction and an associated uncertainty that can be used to assess the prediction likeliness. Moreover, we provide a methodology for the information fusion of two primary sources: an ensemble classifier based on machine data and an expert-centered model. We demonstrate the information fusion approach using data from an industrial setup, which rounds up the application part of this research. Furthermore, we address the problem of data drift by proposing a methodology to update the data-based models using an evidence theory approach. We validate the approach using the Benchmark Tennessee Eastman while doing an ablation study of the model update parameters.

The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.

We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司