亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recommendation systems are ubiquitous, from Spotify playlist suggestions to Amazon product suggestions. Nevertheless, depending on the methodology or the dataset, these systems typically fail to capture user preferences and generate general recommendations. Recent advancements in Large Language Models (LLM) offer promising results for analyzing user queries. However, employing these models to capture user preferences and efficiency remains an open question. In this paper, we propose LLMRS, an LLM-based zero-shot recommender system where we employ pre-trained LLM to encode user reviews into a review score and generate user-tailored recommendations. We experimented with LLMRS on a real-world dataset, the Amazon product reviews, for software purchase use cases. The results show that LLMRS outperforms the ranking-based baseline model while successfully capturing meaningful information from product reviews, thereby providing more reliable recommendations.

相關內容

大語言模型是基于海量文本數據訓練的深度學習模型。它不僅能夠生成自然語言文本,還能夠深入理解文本含義,處理各種自然語言任務,如文本摘要、問答、翻譯等。2023年,大語言模型及其在人工智能領域的應用已成為全球科技研究的熱點,其在規模上的增長尤為引人注目,參數量已從最初的十幾億躍升到如今的一萬億。參數量的提升使得模型能夠更加精細地捕捉人類語言微妙之處,更加深入地理解人類語言的復雜性。在過去的一年里,大語言模型在吸納新知識、分解復雜任務以及圖文對齊等多方面都有顯著提升。隨著技術的不斷成熟,它將不斷拓展其應用范圍,為人類提供更加智能化和個性化的服務,進一步改善人們的生活和生產方式。

Automated Program Repair (APR) has evolved significantly with the advent of Large Language Models (LLMs). Fine-tuning LLMs for program repair is a recent avenue of research, with many dimensions which have not been explored. Existing work mostly fine-tunes LLMs with naive code representations and is fundamentally limited in its ability to fine-tune larger LLMs. To address this problem, we propose RepairLLaMA, a novel program repair approach that combines 1) code representations for APR and 2) the state-of-the-art parameter-efficient LLM fine-tuning technique called LoRA. This results in RepairLLaMA producing a highly effective `program repair adapter' for fixing bugs with language models. Our experiments demonstrate the validity of both concepts. First, fine-tuning adapters with program repair specific code representations enables the model to use meaningful repair signals. Second, parameter-efficient fine-tuning helps fine-tuning to converge and contributes to the effectiveness of the repair adapter to fix data-points outside the fine-tuning data distribution. Overall, RepairLLaMA correctly fixes 125 Defects4J v2 and 82 HumanEval-Java bugs, outperforming all baselines.

Large Language Models (LLMs) have showcased remarkable capabilities in following human instructions. However, recent studies have raised concerns about the robustness of LLMs when prompted with instructions combining textual adversarial samples. In this paper, drawing inspiration from recent works that LLMs are sensitive to the design of the instructions, we utilize instructions in code style, which are more structural and less ambiguous, to replace typically natural language instructions. Through this conversion, we provide LLMs with more precise instructions and strengthen the robustness of LLMs. Moreover, under few-shot scenarios, we propose a novel method to compose in-context demonstrations using both clean and adversarial samples (\textit{adversarial context method}) to further boost the robustness of the LLMs. Experiments on eight robustness datasets show that our method consistently outperforms prompting LLMs with natural language instructions. For example, with gpt-3.5-turbo, our method achieves an improvement of 5.68\% in test set accuracy and a reduction of 5.66 points in Attack Success Rate (ASR).

We introduce PokeLLMon, the first LLM-embodied agent that achieves human-parity performance in tactical battle games, as demonstrated in Pokemon battles. The design of PokeLLMon incorporates three key strategies: (i) In-context reinforcement learning that instantly consumes text-based feedback derived from battles to iteratively refine the policy; (ii) Knowledge-augmented generation that retrieves external knowledge to counteract hallucination and enables the agent to act timely and properly; (iii) Consistent action generation to mitigate the panic switching phenomenon when the agent faces a powerful opponent and wants to elude the battle. We show that online battles against human demonstrates PokeLLMon's human-like battle strategies and just-in-time decision making, achieving 49% of win rate in the Ladder competitions and 56% of win rate in the invited battles. Our implementation and playable battle logs are available at: \url{//github.com/git-disl/PokeLLMon}.

IoT devices are currently facing continuous malicious attacks due to their widespread use. Among these IoT devices, web vulnerabilities are also widely exploited because of their inherent characteristics, such as improper permission controls and insecure interfaces. Recently, the embedded system web interface framework has become highly diverse, and specific vulnerabilities can arise if developers forget to detect user input parameters or if the detection process is not strict enough. Therefore, discovering vulnerabilities in the web interfaces of IoT devices accurately and comprehensively through an automated method is a major challenge. This paper aims to work out the challenge. We have developed an automated vulnerability detection system called LuaTaint for the typical web interface framework, LuCI. The system employs static taint analysis to address web security issues on mobile terminal platforms to ensure detection coverage. It integrates rules pertaining to page handler control logic within the taint detection process to improve its extensibility. We also implemented a post-processing step with the assistance of large language models to enhance accuracy and reduce the need for manual analysis. We have created a prototype of LuaTaint and tested it on 92 IoT firmwares from 8 well-known vendors. LuaTaint has discovered 68 unknown vulnerabilities.

We present a new Python toolkit called RecWizard for Conversational Recommender Systems (CRS). RecWizard offers support for development of models and interactive user interface, drawing from the best practices of the Huggingface ecosystems. CRS with RecWizard are modular, portable, interactive and Large Language Models (LLMs)-friendly, to streamline the learning process and reduce the additional effort for CRS research. For more comprehensive information about RecWizard, please check our GitHub //github.com/McAuley-Lab/RecWizard.

Contextualized embeddings are the preferred tool for modeling Lexical Semantic Change (LSC). Current evaluations typically focus on a specific task known as Graded Change Detection (GCD). However, performance comparison across work are often misleading due to their reliance on diverse settings. In this paper, we evaluate state-of-the-art models and approaches for GCD under equal conditions. We further break the LSC problem into Word-in-Context (WiC) and Word Sense Induction (WSI) tasks, and compare models across these different levels. Our evaluation is performed across different languages on eight available benchmarks for LSC, and shows that (i) APD outperforms other approaches for GCD; (ii) XL-LEXEME outperforms other contextualized models for WiC, WSI, and GCD, while being comparable to GPT-4; (iii) there is a clear need for improving the modeling of word meanings, as well as focus on how, when, and why these meanings change, rather than solely focusing on the extent of semantic change.

Recent advances in text-guided video editing have showcased promising results in appearance editing (e.g., stylization). However, video motion editing in the temporal dimension (e.g., from eating to waving), which distinguishes video editing from image editing, is underexplored. In this work, we present UniEdit, a tuning-free framework that supports both video motion and appearance editing by harnessing the power of a pre-trained text-to-video generator within an inversion-then-generation framework. To realize motion editing while preserving source video content, based on the insights that temporal and spatial self-attention layers encode inter-frame and intra-frame dependency respectively, we introduce auxiliary motion-reference and reconstruction branches to produce text-guided motion and source features respectively. The obtained features are then injected into the main editing path via temporal and spatial self-attention layers. Extensive experiments demonstrate that UniEdit covers video motion editing and various appearance editing scenarios, and surpasses the state-of-the-art methods. Our code will be publicly available.

Recent advancements in Large Language Models (LLMs) and Large Multi-modal Models (LMMs) have shown potential in various medical applications, such as Intelligent Medical Diagnosis. Although impressive results have been achieved, we find that existing benchmarks do not reflect the complexity of real medical reports and specialized in-depth reasoning capabilities. In this work, we introduced RJUA-MedDQA, a comprehensive benchmark in the field of medical specialization, which poses several challenges: comprehensively interpreting imgage content across diverse challenging layouts, possessing numerical reasoning ability to identify abnormal indicators and demonstrating clinical reasoning ability to provide statements of disease diagnosis, status and advice based on medical contexts. We carefully design the data generation pipeline and proposed the Efficient Structural Restoration Annotation (ESRA) Method, aimed at restoring textual and tabular content in medical report images. This method substantially enhances annotation efficiency, doubling the productivity of each annotator, and yields a 26.8% improvement in accuracy. We conduct extensive evaluations, including few-shot assessments of 5 LMMs which are capable of solving Chinese medical QA tasks. To further investigate the limitations and potential of current LMMs, we conduct comparative experiments on a set of strong LLMs by using image-text generated by ESRA method. We report the performance of baselines and offer several observations: (1) The overall performance of existing LMMs is still limited; however LMMs more robust to low-quality and diverse-structured images compared to LLMs. (3) Reasoning across context and image content present significant challenges. We hope this benchmark helps the community make progress on these challenging tasks in multi-modal medical document understanding and facilitate its application in healthcare.

Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.

Object detectors usually achieve promising results with the supervision of complete instance annotations. However, their performance is far from satisfactory with sparse instance annotations. Most existing methods for sparsely annotated object detection either re-weight the loss of hard negative samples or convert the unlabeled instances into ignored regions to reduce the interference of false negatives. We argue that these strategies are insufficient since they can at most alleviate the negative effect caused by missing annotations. In this paper, we propose a simple but effective mechanism, called Co-mining, for sparsely annotated object detection. In our Co-mining, two branches of a Siamese network predict the pseudo-label sets for each other. To enhance multi-view learning and better mine unlabeled instances, the original image and corresponding augmented image are used as the inputs of two branches of the Siamese network, respectively. Co-mining can serve as a general training mechanism applied to most of modern object detectors. Experiments are performed on MS COCO dataset with three different sparsely annotated settings using two typical frameworks: anchor-based detector RetinaNet and anchor-free detector FCOS. Experimental results show that our Co-mining with RetinaNet achieves 1.4%~2.1% improvements compared with different baselines and surpasses existing methods under the same sparsely annotated setting.

北京阿比特科技有限公司