亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A general class of the almost instantaneous fixed-to-variable-length (AIFV) codes is proposed, which contains every possible binary code we can make when allowing finite bits of decoding delay. The contribution of the paper lies in the following. (i) Introducing $N$-bit-delay AIFV codes, constructed by multiple code trees with higher flexibility than the conventional AIFV codes. (ii) Proving that the proposed codes can represent any uniquely-encodable and uniquely-decodable variable-to-variable length codes. (iii) Showing how to express codes as multiple code trees with minimum decoding delay. (iv) Formulating the constraints of decodability as the comparison of intervals in the real number line. The theoretical results in this paper are expected to be useful for further study on AIFV codes.

相關內容

This paper presents a new algorithm for generating random inverse-Wishart matrices that directly generates the Cholesky factor of the matrix without computing the factorization. Whenever parameterized in terms of a precision matrix $\Omega=\Sigma^{-1}$, or its Cholesky factor, instead of a covariance matrix $\Sigma$, the new algorithm is more efficient than the current standard algorithm.

Spinal cord segmentation is clinically relevant and is notably used to compute spinal cord cross-sectional area (CSA) for the diagnosis and monitoring of cord compression or neurodegenerative diseases such as multiple sclerosis. While several semi and automatic methods exist, one key limitation remains: the segmentation depends on the MRI contrast, resulting in different CSA across contrasts. This is partly due to the varying appearance of the boundary between the spinal cord and the cerebrospinal fluid that depends on the sequence and acquisition parameters. This contrast-sensitive CSA adds variability in multi-center studies where protocols can vary, reducing the sensitivity to detect subtle atrophies. Moreover, existing methods enhance the CSA variability by training one model per contrast, while also producing binary masks that do not account for partial volume effects. In this work, we present a deep learning-based method that produces soft segmentations of the spinal cord. Using the Spine Generic Public Database of healthy participants ($\text{n}=267$; $\text{contrasts}=6$), we first generated participant-wise soft ground truth (GT) by averaging the binary segmentations across all 6 contrasts. These soft GT, along with a regression-based loss function, were then used to train a UNet model for spinal cord segmentation. We evaluated our model against state-of-the-art methods and performed ablation studies involving different GT mask types, loss functions, and contrast-specific models. Our results show that using the soft average segmentations along with a regression loss function reduces CSA variability ($p < 0.05$, Wilcoxon signed-rank test). The proposed spinal cord segmentation model generalizes better than the state-of-the-art contrast-specific methods amongst unseen datasets, vendors, contrasts, and pathologies (compression, lesions), while accounting for partial volume effects.

Suppose a finite, unweighted, combinatorial graph $G = (V,E)$ is the union of several (degree-)regular graphs which are then additionally connected with a few additional edges. $G$ will then have only a small number of vertices $v \in V$ with the property that one of their neighbors $(v,w) \in E$ has a higher degree $\mbox{deg}(w) > \mbox{deg}(v)$. We prove the converse statement: if a graph has few vertices having a neighbor with higher degree and satisfies a mild regularity condition, then, via adding and removing a few edges, the graph can be turned into a disjoint union of (distance-)regular graphs. The number of edge operations depends on the maximum degree and number of vertices with a higher degree neighbor but is independent of the size of $|V|$.

High-dimensional central limit theorems have been intensively studied with most focus being on the case where the data is sub-Gaussian or sub-exponential. However, heavier tails are omnipresent in practice. In this article, we study the critical growth rates of dimension $d$ below which Gaussian approximations are asymptotically valid but beyond which they are not. We are particularly interested in how these thresholds depend on the number of moments $m$ that the observations possess. For every $m\in(2,\infty)$, we construct i.i.d. random vectors $\textbf{X}_1,...,\textbf{X}_n$ in $\mathbb{R}^d$, the entries of which are independent and have a common distribution (independent of $n$ and $d$) with finite $m$th absolute moment, and such that the following holds: if there exists an $\varepsilon\in(0,\infty)$ such that $d/n^{m/2-1+\varepsilon}\not\to 0$, then the Gaussian approximation error (GAE) satisfies $$ \limsup_{n\to\infty}\sup_{t\in\mathbb{R}}\left[\mathbb{P}\left(\max_{1\leq j\leq d}\frac{1}{\sqrt{n}}\sum_{i=1}^n\textbf{X}_{ij}\leq t\right)-\mathbb{P}\left(\max_{1\leq j\leq d}\textbf{Z}_j\leq t\right)\right]=1,$$ where $\textbf{Z} \sim \mathsf{N}_d(\textbf{0}_d,\mathbf{I}_d)$. On the other hand, a result in Chernozhukov et al. (2023a) implies that the left-hand side above is zero if just $d/n^{m/2-1-\varepsilon}\to 0$ for some $\varepsilon\in(0,\infty)$. In this sense, there is a moment-dependent phase transition at the threshold $d=n^{m/2-1}$ above which the limiting GAE jumps from zero to one.

In this paper, we obtain sufficient and necessary conditions for quasi-cyclic codes with index even to be symplectic self-orthogonal. Then, we propose a method for constructing symplectic self-orthogonal quasi-cyclic codes, which allows arbitrary polynomials that coprime $x^{n}-1$ to construct symplectic self-orthogonal codes. Moreover, by decomposing the space of quasi-cyclic codes, we provide lower and upper bounds on the minimum symplectic distances of a class of 1-generator quasi-cyclic codes and their symplectic dual codes. Finally, we construct many binary symplectic self-orthogonal codes with excellent parameters, corresponding to 117 record-breaking quantum codes, improving Grassl's table (Bounds on the Minimum Distance of Quantum Codes. //www.codetables.de).

We develop a provably efficient importance sampling scheme that estimates exit probabilities of solutions to small-noise stochastic reaction-diffusion equations from scaled neighborhoods of a stable equilibrium. The moderate deviation scaling allows for a local approximation of the nonlinear dynamics by their linearized version. In addition, we identify a finite-dimensional subspace where exits take place with high probability. Using stochastic control and variational methods we show that our scheme performs well both in the zero noise limit and pre-asymptotically. Simulation studies for stochastically perturbed bistable dynamics illustrate the theoretical results.

Symmetry is a cornerstone of much of mathematics, and many probability distributions possess symmetries characterized by their invariance to a collection of group actions. Thus, many mathematical and statistical methods rely on such symmetry holding and ostensibly fail if symmetry is broken. This work considers under what conditions a sequence of probability measures asymptotically gains such symmetry or invariance to a collection of group actions. Considering the many symmetries of the Gaussian distribution, this work effectively proposes a non-parametric type of central limit theorem. That is, a Lipschitz function of a high dimensional random vector will be asymptotically invariant to the actions of certain compact topological groups. Applications of this include a partial law of the iterated logarithm for uniformly random points in an $\ell_p^n$-ball and an asymptotic equivalence between classical parametric statistical tests and their randomization counterparts even when invariance assumptions are violated.

A new mechanical model on noncircular shallow tunnelling considering initial stress field is proposed in this paper by constraining far-field ground surface to eliminate displacement singularity at infinity, and the originally unbalanced tunnel excavation problem in existing solutions is turned to an equilibrium one of mixed boundaries. By applying analytic continuation, the mixed boundaries are transformed to a homogenerous Riemann-Hilbert problem, which is subsequently solved via an efficient and accurate iterative method with boundary conditions of static equilibrium, displacement single-valuedness, and traction along tunnel periphery. The Lanczos filtering technique is used in the final stress and displacement solution to reduce the Gibbs phenomena caused by the constrained far-field ground surface for more accurte results. Several numerical cases are conducted to intensively verify the proposed solution by examining boundary conditions and comparing with existing solutions, and all the results are in good agreements. Then more numerical cases are conducted to investigate the stress and deformation distribution along ground surface and tunnel periphery, and several engineering advices are given. Further discussions on the defects of the proposed solution are also conducted for objectivity.

This article investigates a local discontinuous Galerkin (LDG) method for one-dimensional and two-dimensional singularly perturbed reaction-diffusion problems on a Shishkin mesh. During this process, due to the inability of the energy norm to fully capture the behavior of the boundary layers appearing in the solutions, a balanced norm is introduced. By designing novel numerical fluxes and constructing special interpolations, optimal convergences under the balanced norm are achieved in both 1D and 2D cases. Numerical experiments support the main theoretical conclusions.

Differential geometric approaches are ubiquitous in several fields of mathematics, physics and engineering, and their discretizations enable the development of network-based mathematical and computational frameworks, which are essential for large-scale data science. The Forman-Ricci curvature (FRC) - a statistical measure based on Riemannian geometry and designed for networks - is known for its high capacity for extracting geometric information from complex networks. However, extracting information from dense networks is still challenging due to the combinatorial explosion of high-order network structures. Motivated by this challenge we sought a set-theoretic representation theory for high-order network cells and FRC, as well as their associated concepts and properties, which together provide an alternative and efficient formulation for computing high-order FRC in complex networks. We provide a pseudo-code, a software implementation coined FastForman, as well as a benchmark comparison with alternative implementations. Crucially, our representation theory reveals previous computational bottlenecks and also accelerates the computation of FRC. As a consequence, our findings open new research possibilities in complex systems where higher-order geometric computations are required.

北京阿比特科技有限公司