亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Interpreting data with mathematical models is an important aspect of real-world applied mathematical modeling. Very often we are interested to understand the extent to which a particular data set informs and constrains model parameters. This question is closely related to the concept of parameter identifiability, and in this article we present a series of computational exercises to introduce tools that can be used to assess parameter identifiability, estimate parameters and generate model predictions. Taking a likelihood-based approach, we show that very similar ideas and algorithms can be used to deal with a range of different mathematical modelling frameworks. The exercises and results presented in this article are supported by a suite of open access codes that can be accessed on GitHub.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 均值 · MoDELS · 泛函 · 組合性 ·
2024 年 12 月 20 日

This paper proves a homomorphism between extensional formal semantics and distributional vector space semantics, demonstrating structural compatibility. Formal semantics models meaning as reference, using logical structures to map linguistic expressions to truth conditions, while distributional semantics represents meaning through word vectors derived from contextual usage. By constructing injective mappings that preserve semantic relationships, we show that every semantic function in an extensional model corresponds to a compatible vector space operation. This result respects compositionality and extends to function compositions, constant interpretations, and $n$-ary relations. Rather than pursuing unification, we highlight a mathematical foundation for hybrid cognitive models that integrate symbolic and sub-symbolic reasoning and semantics. These findings support multimodal language processing, aligning `meaning as reference' (Frege, Tarski) with `meaning as use' (Wittgenstein, Firth).

Causality plays an important role in understanding intelligent behavior, and there is a wealth of literature on mathematical models for causality, most of which is focused on causal graphs. Causal graphs are a powerful tool for a wide range of applications, in particular when the relevant variables are known and at the same level of abstraction. However, the given variables can also be unstructured data, like pixels of an image. Meanwhile, the causal variables, such as the positions of objects in the image, can be arbitrary deterministic functions of the given variables. Moreover, the causal variables may form a hierarchy of abstractions, in which the macro-level variables are deterministic functions of the micro-level variables. Causal graphs are limited when it comes to modeling this kind of situation. In the presence of deterministic relationships there is generally no causal graph that satisfies both the Markov condition and the faithfulness condition. We introduce factored space models as an alternative to causal graphs which naturally represent both probabilistic and deterministic relationships at all levels of abstraction. Moreover, we introduce structural independence and establish that it is equivalent to statistical independence in every distribution that factorizes over the factored space. This theorem generalizes the classical soundness and completeness theorem for d-separation.

In this paper, a highly parallel and derivative-free martingale neural network learning method is proposed to solve Hamilton-Jacobi-Bellman (HJB) equations arising from stochastic optimal control problems (SOCPs), as well as general quasilinear parabolic partial differential equations (PDEs). In both cases, the PDEs are reformulated into a martingale formulation such that loss functions will not require the computation of the gradient or Hessian matrix of the PDE solution, while its implementation can be parallelized in both time and spatial domains. Moreover, the martingale conditions for the PDEs are enforced using a Galerkin method in conjunction with adversarial learning techniques, eliminating the need for direct computation of the conditional expectations associated with the martingale property. For SOCPs, a derivative-free implementation of the maximum principle for optimal controls is also introduced. The numerical results demonstrate the effectiveness and efficiency of the proposed method, which is capable of solving HJB and quasilinear parabolic PDEs accurately in dimensions as high as 10,000.

Measurement-based quantum computation (MBQC) offers a fundamentally unique paradigm to design quantum algorithms. Indeed, due to the inherent randomness of quantum measurements, the natural operations in MBQC are not deterministic and unitary, but are rather augmented with probabilistic byproducts. Yet, the main algorithmic use of MBQC so far has been to completely counteract this probabilistic nature in order to simulate unitary computations expressed in the circuit model. In this work, we propose designing MBQC algorithms that embrace this inherent randomness and treat the random byproducts in MBQC as a resource for computation. As a natural application where randomness can be beneficial, we consider generative modeling, a task in machine learning centered around generating complex probability distributions. To address this task, we propose a variational MBQC algorithm equipped with control parameters that allow one to directly adjust the degree of randomness to be admitted in the computation. Our algebraic and numerical findings indicate that this additional randomness can lead to significant gains in expressivity and learning performance for certain generative modeling tasks, respectively. These results highlight the potential advantages in exploiting the inherent randomness of MBQC and motivate further research into MBQC-based algorithms.

In a Jacobi--Davidson (JD) type method for singular value decomposition (SVD) problems, called JDSVD, a large symmetric and generally indefinite correction equation is solved iteratively at each outer iteration, which constitutes the inner iterations and dominates the overall efficiency of JDSVD. In this paper, a convergence analysis is made on the minimal residual (MINRES) method for the correction equation. Motivated by the results obtained, at each outer iteration a new correction equation is derived that extracts useful information from current subspaces to construct effective preconditioners for the correction equation and is proven to retain the same convergence of outer iterations of JDSVD.The resulting method is called inner preconditioned JDSVD (IPJDSVD) method; it is also a new JDSVD method, and any viable preconditioner for the correction equations in JDSVD is straightforwardly applicable to those in IPJDSVD. Convergence results show that MINRES for the new correction equation can converge much faster when there is a cluster of singular values closest to a given target. A new thick-restart IPJDSVD algorithm with deflation and purgation is proposed that simultaneously accelerates the outer and inner convergence of the standard thick-restart JDSVD and computes several singular triplets. Numerical experiments justify the theory and illustrate the considerable superiority of IPJDSVD to JDSVD, and demonstrate that a similar two-stage IPJDSVD algorithm substantially outperforms the most advanced PRIMME\_SVDS software nowadays for computing the smallest singular triplets.

This work presents a numerical analysis of a Discontinuous Galerkin (DG) method for a transformed master equation modeling an open quantum system: a quantum sub-system interacting with a noisy environment. It is shown that the presented transformed master equation has a reduced computational cost in comparison to a Wigner-Fokker-Planck model of the same system for the general case of non-harmonic potentials via DG schemes. Specifics of a Discontinuous Galerkin (DG) numerical scheme adequate for the system of convection-diffusion equations obtained for our Lindblad master equation in position basis are presented. This lets us solve computationally the transformed system of interest modeling our open quantum system problem. The benchmark case of a harmonic potential is then presented, for which the numerical results are compared against the analytical steady-state solution of this problem. Two non-harmonic cases are then presented: the linear and quartic potentials are modeled via our DG framework, for which we show our numerical results.

In this manuscript we present the tensor-train reduced basis method, a novel projection-based reduced-order model for the efficient solution of parameterized partial differential equations. Despite their popularity and considerable computational advantages with respect to their full order counterparts, reduced-order models are typically characterized by a considerable offline computational cost. The proposed approach addresses this issue by efficiently representing high dimensional finite element quantities with the tensor train format. This method entails numerous benefits, namely, the smaller number of operations required to compute the reduced subspaces, the cheaper hyper-reduction strategy employed to reduce the complexity of the PDE residual and Jacobian, and the decreased dimensionality of the projection subspaces for a fixed accuracy. We provide a posteriori estimates that demonstrate the accuracy of the proposed method, we test its computational performance for the heat equation and transient linear elasticity on three-dimensional Cartesian geometries.

We present a novel class of projected gradient (PG) methods for minimizing a smooth but not necessarily convex function over a convex compact set. We first provide a novel analysis of the "vanilla" PG method, achieving the best-known iteration complexity for finding an approximate stationary point of the problem. We then develop an "auto-conditioned" projected gradient (AC-PG) variant that achieves the same iteration complexity without requiring the input of the Lipschitz constant of the gradient or any line search procedure. The key idea is to estimate the Lipschitz constant using first-order information gathered from the previous iterations, and to show that the error caused by underestimating the Lipschitz constant can be properly controlled. We then generalize the PG methods to the stochastic setting, by proposing a stochastic projected gradient (SPG) method and a variance-reduced stochastic gradient (VR-SPG) method, achieving new complexity bounds in different oracle settings. We also present auto-conditioned stepsize policies for both stochastic PG methods and establish comparable convergence guarantees.

In this work we build optimal experimental designs for precise estimation of the functional coefficient of a function-on-function linear regression model where both the response and the factors are continuous functions of time. After obtaining the variance-covariance matrix of the estimator of the functional coefficient which minimizes the integrated sum of square of errors, we extend the classical definition of optimal design to this estimator, and we provide the expression of the A-optimal and of the D-optimal designs. Examples of optimal designs for dynamic experimental factors are then computed through a suitable algorithm, and we discuss different scenarios in terms of the set of basis functions used for their representation. Finally, we present an example with simulated data to illustrate the feasibility of our methodology.

We prove, for stably computably enumerable formal systems, direct analogues of the first and second incompleteness theorems of G\"odel. A typical stably computably enumerable set is the set of Diophantine equations with no integer solutions, and in particular such sets are generally not computably enumerable. And so this gives the first extension of the second incompleteness theorem to non classically computable formal systems. Let's motivate this with a somewhat physical application. Let $\mathcal{H} $ be the suitable infinite time limit (stabilization in the sense of the paper) of the mathematical output of humanity, specializing to first order sentences in the language of arithmetic (for simplicity), and understood as a formal system. Suppose that all the relevant physical processes in the formation of $\mathcal{H} $ are Turing computable. Then as defined $\mathcal{H} $ may \emph{not} be computably enumerable, but it is stably computably enumerable. Thus, the classical G\"odel disjunction applied to $\mathcal{H} $ is meaningless, but applying our incompleteness theorems to $\mathcal{H} $ we then get a sharper version of G\"odel's disjunction: assume $\mathcal{H} \vdash PA$ then either $\mathcal{H} $ is not stably computably enumerable or $\mathcal{H} $ is not 1-consistent (in particular is not sound) or $\mathcal{H} $ cannot prove a certain true statement of arithmetic (and cannot disprove it if in addition $\mathcal{H} $ is 2-consistent).

北京阿比特科技有限公司