The minimum directed feedback vertex set problem consists in finding the minimum set of vertices that should be removed in order to make a directed graph acyclic. This is a well-known NP-hard optimization problem with applications in various fields, such as VLSI chip design, bioinformatics and transaction processing deadlock prevention and node-weighted network design. We show a constant factor approximation for the directed feedback vertex set problem in graphs of bounded genus.
The remarkable capabilities of large-scale language models, such as ChatGPT, in text generation have impressed readers and spurred researchers to devise detectors to mitigate potential risks, including misinformation, phishing, and academic dishonesty. Despite this, most previous studies have been predominantly geared towards creating detectors that differentiate between purely ChatGPT-generated texts and human-authored texts. This approach, however, fails to work on discerning texts generated through human-machine collaboration, such as ChatGPT-polished texts. Addressing this gap, we introduce a novel dataset termed HPPT (ChatGPT-polished academic abstracts), facilitating the construction of more robust detectors. It diverges from extant corpora by comprising pairs of human-written and ChatGPT-polished abstracts instead of purely ChatGPT-generated texts. Additionally, we propose the "Polish Ratio" method, an innovative measure of the degree of modification made by ChatGPT compared to the original human-written text. It provides a mechanism to measure the degree of ChatGPT influence in the resulting text. Our experimental results show our proposed model has better robustness on the HPPT dataset and two existing datasets (HC3 and CDB). Furthermore, the "Polish Ratio" we proposed offers a more comprehensive explanation by quantifying the degree of ChatGPT involvement.
We develop a post-selection inference method for the Cox proportional hazards model with interval-censored data, which provides asymptotically valid p-values and confidence intervals conditional on the model selected by lasso. The method is based on a pivotal quantity that is shown to converge to a uniform distribution under local alternatives. The proof can be adapted to many other regression models, which is illustrated by the extension to generalized linear models and the Cox model with right-censored data. Our method involves estimation of the efficient information matrix, for which several approaches are proposed with proof of their consistency. Thorough simulation studies show that our method has satisfactory performance in samples of modest sizes. The utility of the method is illustrated via an application to an Alzheimer's disease study.
We consider the problem of evaluating dynamic consistency in discrete time probabilistic filters that approximate stochastic system state densities with Gaussian mixtures. Dynamic consistency means that the estimated probability distributions correctly describe the actual uncertainties. As such, the problem of consistency testing naturally arises in applications with regards to estimator tuning and validation. However, due to the general complexity of the density functions involved, straightforward approaches for consistency testing of mixture-based estimators have remained challenging to define and implement. This paper derives a new exact result for Gaussian mixture consistency testing within the framework of normalized deviation squared (NDS) statistics. It is shown that NDS test statistics for generic multivariate Gaussian mixture models exactly follow mixtures of generalized chi-square distributions, for which efficient computational tools are available. The accuracy and utility of the resulting consistency tests are numerically demonstrated on static and dynamic mixture estimation examples.
The objective of the KPR agents are to learn themselves in the minimum (learning) time to have maximum success or utilization probability ($f$). A dictator can easily solve the problem with $f = 1$ in no time, by asking every one to form a queue and go to the respective restaurant, resulting in no fluctuation and full utilization from the first day (convergence time $\tau = 0$). It has already been shown that if each agent chooses randomly the restaurants, $f = 1 - e^{-1} \simeq 0.63$ (where $e \simeq 2.718$ denotes the Euler number) in zero time ($\tau = 0$). With the only available information about yesterday's crowd size in the restaurant visited by the agent (as assumed for the rest of the strategies studied here), the crowd avoiding (CA) strategies can give higher values of $f$ but also of $\tau$. Several numerical studies of modified learning strategies actually indicated increased value of $f = 1 - \alpha$ for $\alpha \to 0$, with $\tau \sim 1/\alpha$. We show here using Monte Carlo technique, a modified Greedy Crowd Avoiding (GCA) Strategy can assure full utilization ($f = 1$) in convergence time $\tau \simeq eN$, with of course non-zero probability for an even larger convergence time. All these observations suggest that the strategies with single step memory of the individuals can never collectively achieve full utilization ($f = 1$) in finite convergence time and perhaps the maximum possible utilization that can be achieved is about eighty percent ($f \simeq 0.80$) in an optimal time $\tau$ of order ten, even when $N$ the number of customers or of the restaurants goes to infinity.
Surface codes are versatile quantum error-correcting codes known for their planar geometry, making them ideal for practical implementations. While the original proposal used Pauli $X$ or Pauli $Z$ operators in a square structure, these codes can be improved by rotating the lattice or incorporating a mix of generators in the XZZX variant. However, a comprehensive theoretical analysis of the logical error rate for these variants has been lacking. To address this gap, we present theoretical formulas based on recent advancements in understanding the weight distribution of stabilizer codes. For example, over an asymmetric channel with asymmetry $A=10$ and a physical error rate $p \to 0$, we observe that the logical error rate asymptotically approaches $p_\mathrm{L} \to 10 p^2$ for the rotated $[[9,1,3]]$ XZZX code and $p_\mathrm{L} \to 18.3 p^2$ for the $[[13,1,3]]$ surface code. Additionally, we observe a particular behavior regarding rectangular lattices in the presence of asymmetric channels. Our findings demonstrate that implementing both rotation and XZZX modifications simultaneously can lead to suboptimal performance. Thus, in scenarios involving a rectangular lattice, it is advisable to avoid using both modifications simultaneously. This research enhances our theoretical understanding of the logical error rates for XZZX and rotated surface codes, providing valuable insights into their performance under different conditions.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
We address the task of automatically scoring the competency of candidates based on textual features, from the automatic speech recognition (ASR) transcriptions in the asynchronous video job interview (AVI). The key challenge is how to construct the dependency relation between questions and answers, and conduct the semantic level interaction for each question-answer (QA) pair. However, most of the recent studies in AVI focus on how to represent questions and answers better, but ignore the dependency information and interaction between them, which is critical for QA evaluation. In this work, we propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs. Specifically, we construct a sentence-level relational graph neural network to capture the dependency information of sentences in or between the question and the answer. Based on these graphs, we employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session. Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction. Empirical results conducted on CHNAT (a real-world dataset) validate that our proposed model significantly outperforms text-matching based benchmark models. Ablation studies and experimental results with 10 random seeds also show the effectiveness and stability of our models.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.
Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.