亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Angluin's L$^*$ algorithm learns the minimal deterministic finite automaton (DFA) of a regular language using membership and equivalence queries. Its probabilistic approximatively correct (PAC) version substitutes an equivalence query by numerous random membership queries to get a high level confidence to the answer. Thus it can be applied to any kind of device and may be viewed as an algorithm for synthesizing an automaton abstracting the behavior of the device based on observations. Here we are interested on how Angluin's PAC learning algorithm behaves for devices which are obtained from a DFA by introducing some noise. More precisely we study whether Angluin's algorithm reduces the noise and produces a DFA closer to the original one than the noisy device. We propose several ways to introduce the noise: (1) the noisy device inverts the classification of words w.r.t. the DFA with a small probability, (2) the noisy device modifies with a small probability the letters of the word before asking its classification w.r.t. the DFA, (3) the noisy device combines the classification of a word w.r.t. the DFA and its classification w.r.t. a counter automaton, and (4) the noisy DFA is obtained by a random process from two DFA such that the language of the first one is included in the second one. Then when a word is accepted (resp. rejected) by the first (resp. second) one, it is also accepted (resp. rejected) and in the remaining cases, it is accepted with probability 0.5. Our main experimental contributions consist in showing that: (1) Angluin's algorithm behaves well whenever the noisy device is produced by a random process, (2) but poorly with a structured noise, and, that (3) is able to eliminate pathological behaviours specified in a regular way. Theoretically, we show that randomness almost surely yields systems with non-recursively enumerable languages.

相關內容

We consider a causal inference model in which individuals interact in a social network and they may not comply with the assigned treatments. In particular, we suppose that the form of network interference is unknown to researchers. To estimate meaningful causal parameters in this situation, we introduce a new concept of exposure mapping, which summarizes potentially complicated spillover effects into a fixed dimensional statistic of instrumental variables. We investigate identification conditions for the intention-to-treat effects and the average treatment effects for compliers, while explicitly considering the possibility of misspecification of exposure mapping. Based on our identification results, we develop nonparametric estimation procedures via inverse probability weighting. Their asymptotic properties, including consistency and asymptotic normality, are investigated using an approximate neighborhood interference framework. For an empirical illustration, we apply our method to experimental data on the anti-conflict intervention school program. The proposed methods are readily available with the companion R package latenetwork.

Automatically generating regular expressions (abbrev. regexes) from natural language description (NL2RE) has been an emerging research area. Prior studies treat regex as a linear sequence of tokens and generate the final expressions autoregressively in a single pass. They did not take into account the step-by-step internal text-matching processes behind the final results. This significantly hinders the efficacy and interpretability of regex generation by neural language models. In this paper, we propose a new paradigm called InfeRE, which decomposes the generation of regexes into chains of step-by-step inference. To enhance the robustness, we introduce a self-consistency decoding mechanism that ensembles multiple outputs sampled from different models. We evaluate InfeRE on two publicly available datasets, NL-RX-Turk and KB13, and compare the results with state-of-the-art approaches and the popular tree-based generation approach TRANX. Experimental results show that InfeRE substantially outperforms previous baselines, yielding 16.3% and 14.7% improvement in DFA@5 accuracy on two datasets, respectively. Particularly, InfeRE outperforms the popular tree-based generation approach by 18.1% and 11.3% on both datasets, respectively, in terms of DFA@5 accuracy.

The concept of the federated Cloud-Edge-IoT continuum promises to alleviate many woes of current systems, improving resource use, energy efficiency, quality of service, and more. However, this continuum is still far from being realized in practice, with no comprehensive solutions for developing, deploying, and managing continuum-native applications. Breakthrough innovations and novel system architectures are needed to cope with the ever-increasing heterogeneity and the multi-stakeholder nature of computing resources. This work proposes a novel architecture for choreographing workloads in the continuum, attempting to address these challenges. The architecture that tackles this issue comprehensively, spanning from the workloads themselves, through networking and data exchange, up to the orchestration and choreography mechanisms. The concept emphasizes the use of varied AI techniques, enabling autonomous and intelligent management of resources and workloads. Open standards are also a key part of the proposition, making it possible to fully engage third parties in multi-stakeholder scenarios. Although the presented architecture is promising, much work is required to realize it in practice. To this end, the key directions for future research are outlined.

We aim to develop an English-to-Yoruba machine translation system which can translate English verb phrase text to its Yoruba equivalent.Words from both languages Source Language and Target Language were collected for the verb phrase group in the home domain. The lexical translation is done by assigning values of the matching word in the dictionary. The syntax of the two languages was realized using Context-Free Grammar, we validated the rewrite rules with finite state automata. The human evaluation method was used and expert fluency was scored. The evaluation shows the system performed better than that of sampled Google translation with over 70 percent of the response matching that of the system's output.

The quadrotor is a $6$ degrees-of-freedom (DoF) system with underactuation. Adding a spherical pendulum on top of a quadrotor further complicates the task of achieving any output tracking while stabilizing the rest. In this report, we present different types of controllers for the nonlinear dynamical system of quadrotor and pendulum combination, utilizing feedback-linearization and control Lyapunov function with quadratic programming (CLF-QP) approaches. We demonstrated trajectory tracking for quadrotor-only case as well as quadrotor-pendulum-combined case.

We consider the problem of estimating the false-/ true-positive-rate (FPR/TPR) for a binary classification model when there are incorrect labels (label noise) in the validation set. Our motivating application is fraud prevention where accurate estimates of FPR are critical to preserving the experience for good customers, and where label noise is highly asymmetric. Existing methods seek to minimize the total error in the cleaning process - to avoid cleaning examples that are not noise, and to ensure cleaning of examples that are. This is an important measure of accuracy but insufficient to guarantee good estimates of the true FPR or TPR for a model, and we show that using the model to directly clean its own validation data leads to underestimates even if total error is low. This indicates a need for researchers to pursue methods that not only reduce total error but also seek to de-correlate cleaning error with model scores.

Fractional (hyper-)graph theory is concerned with the specific problems that arise when fractional analogues of otherwise integer-valued (hyper-)graph invariants are considered. The focus of this paper is on fractional edge covers of hypergraphs. Our main technical result generalizes and unifies previous conditions under which the size of the support of fractional edge covers is bounded independently of the size of the hypergraph itself. This allows us to extend previous tractability results for checking if the fractional hypertree width of a given hypergraph is $\leq k$ for some constant $k$. We also show how our results translate to fractional vertex covers.

Cross-corpus speech emotion recognition (SER) seeks to generalize the ability of inferring speech emotion from a well-labeled corpus to an unlabeled one, which is a rather challenging task due to the significant discrepancy between two corpora. Existing methods, typically based on unsupervised domain adaptation (UDA), struggle to learn corpus-invariant features by global distribution alignment, but unfortunately, the resulting features are mixed with corpus-specific features or not class-discriminative. To tackle these challenges, we propose a novel Emotion Decoupling aNd Alignment learning framework (EMO-DNA) for cross-corpus SER, a novel UDA method to learn emotion-relevant corpus-invariant features. The novelties of EMO-DNA are two-fold: contrastive emotion decoupling and dual-level emotion alignment. On one hand, our contrastive emotion decoupling achieves decoupling learning via a contrastive decoupling loss to strengthen the separability of emotion-relevant features from corpus-specific ones. On the other hand, our dual-level emotion alignment introduces an adaptive threshold pseudo-labeling to select confident target samples for class-level alignment, and performs corpus-level alignment to jointly guide model for learning class-discriminative corpus-invariant features across corpora. Extensive experimental results demonstrate the superior performance of EMO-DNA over the state-of-the-art methods in several cross-corpus scenarios. Source code is available at //github.com/Jiaxin-Ye/Emo-DNA.

We analyze the behavior of stochastic approximation algorithms where iterates, in expectation, make progress towards an objective at each step. When progress is proportional to the step size of the algorithm, we prove exponential concentration bounds. These tail-bounds contrast asymptotic normality results which are more frequently associated with stochastic approximation. The methods that we develop rely on a geometric ergodicity proof. This extends a result on Markov chains due to Hajek (1982) to the area of stochastic approximation algorithms. For Projected Stochastic Gradient Descent with a non-vanishing gradient, our results can be used to prove $O(1/t)$ and linear convergence rates.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

北京阿比特科技有限公司