Many training data attribution (TDA) methods aim to estimate how a model's behavior would change if one or more data points were removed from the training set. Methods based on implicit differentiation, such as influence functions, can be made computationally efficient, but fail to account for underspecification, the implicit bias of the optimization algorithm, or multi-stage training pipelines. By contrast, methods based on unrolling address these issues but face scalability challenges. In this work, we connect the implicit-differentiation-based and unrolling-based approaches and combine their benefits by introducing Source, an approximate unrolling-based TDA method that is computed using an influence-function-like formula. While being computationally efficient compared to unrolling-based approaches, Source is suitable in cases where implicit-differentiation-based approaches struggle, such as in non-converged models and multi-stage training pipelines. Empirically, Source outperforms existing TDA techniques in counterfactual prediction, especially in settings where implicit-differentiation-based approaches fall short.
Language models (LMs) derive their capabilities from extensive training on diverse data, including potentially copyrighted material. These models can memorize and generate content similar to their training data, posing potential concerns. Therefore, model creators are motivated to develop mitigation methods that prevent generating protected content. We term this procedure as copyright takedowns for LMs, noting the conceptual similarity to (but legal distinction from) the DMCA takedown This paper introduces the first evaluation of the feasibility and side effects of copyright takedowns for LMs. We propose CoTaEval, an evaluation framework to assess the effectiveness of copyright takedown methods, the impact on the model's ability to retain uncopyrightable factual knowledge from the training data whose recitation is embargoed, and how well the model maintains its general utility and efficiency. We examine several strategies, including adding system prompts, decoding-time filtering interventions, and unlearning approaches. Our findings indicate that no tested method excels across all metrics, showing significant room for research in this unique problem setting and indicating potential unresolved challenges for live policy proposals.
Virtual Screening (VS) of vast compound libraries guided by Artificial Intelligence (AI) models is a highly productive approach to early drug discovery. Data splitting is crucial for better benchmarking of such AI models. Traditional random data splits produce similar molecules between training and test sets, conflicting with the reality of VS libraries which mostly contain structurally distinct compounds. Scaffold split, grouping molecules by shared core structure, is widely considered to reflect this real-world scenario. However, here we show that the scaffold split also overestimates VS performance. The reason is that molecules with different chemical scaffolds are often similar, which hence introduces unrealistically high similarities between training molecules and test molecules following a scaffold split. Our study examined three representative AI models on 60 NCI-60 datasets, each with approximately 30,000 to 50,000 molecules tested on a different cancer cell line. Each dataset was split with three methods: scaffold, Butina clustering and the more accurate Uniform Manifold Approximation and Projection (UMAP) clustering. Regardless of the model, model performance is much worse with UMAP splits from the results of the 2100 models trained and evaluated for each algorithm and split. These robust results demonstrate the need for more realistic data splits to tune, compare, and select models for VS. For the same reason, avoiding the scaffold split is also recommended for other molecular property prediction problems. The code to reproduce these results is available at //github.com/ScaffoldSplitsOverestimateVS
Large language models show compelling performance on reasoning tasks but they tend to perform much worse in languages other than English. This is unsurprising given that their training data largely consists of English text and instructions. A typical solution is to translate instruction data into all languages of interest, and then train on the resulting multilingual data, which is called translate-training. This approach not only incurs high cost, but also results in poorly translated data due to the non-standard formatting of mathematical chain-of-thought. In this paper, we explore the benefits of question alignment, where we train the model to translate reasoning questions into English by finetuning on X-English parallel question data. In this way we perform targeted, in-domain language alignment which makes best use of English instruction data to unlock the LLMs' multilingual reasoning abilities. Experimental results on LLaMA2-13B show that question alignment leads to consistent improvements over the translate-training approach: an average improvement of 11.3% and 16.1% accuracy across ten languages on the MGSM and MSVAMP multilingual reasoning benchmarks. The project will be available at: //github.com/NJUNLP/QAlign.
Recent work has suggested using Monte Carlo methods based on piecewise deterministic Markov processes (PDMPs) to sample from target distributions of interest. PDMPs are non-reversible continuous-time processes endowed with momentum, and hence can mix better than standard reversible MCMC samplers. Furthermore, they can incorporate exact sub-sampling schemes which only require access to a single (randomly selected) data point at each iteration, yet without introducing bias to the algorithm's stationary distribution. However, the range of models for which PDMPs can be used, particularly with sub-sampling, is limited. We propose approximate simulation of PDMPs with sub-sampling for scalable sampling from posterior distributions. The approximation takes the form of an Euler approximation to the true PDMP dynamics, and involves using an estimate of the gradient of the log-posterior based on a data sub-sample. We thus call this class of algorithms stochastic-gradient PDMPs. Importantly, the trajectories of stochastic-gradient PDMPs are continuous and can leverage recent ideas for sampling from measures with continuous and atomic components. We show these methods are easy to implement, present results on their approximation error and demonstrate numerically that this class of algorithms has similar efficiency to, but is more robust than, stochastic gradient Langevin dynamics.
The recent increase in data and model scale for language model pre-training has led to huge training costs. In scenarios where new data become available over time, updating a model instead of fully retraining it would therefore provide significant gains. We study the pros and cons of updating a language model when new data comes from new languages -- the case of continual learning under language shift. Starting from a monolingual English language model, we incrementally add data from Danish, Icelandic, and Norwegian to investigate how forward and backward transfer effects depend on pre-training order and characteristics of languages, for three different model sizes. Our results show that, while forward transfer is largely positive and independent of language order, backward transfer can be positive or negative depending on the order and characteristics of new languages. We explore a number of potentially explanatory factors and find that a combination of language contamination and syntactic similarity best fits our results.
AI model alignment is crucial due to inadvertent biases in training data and the underspecified pipeline in modern machine learning, where numerous models with excellent test set metrics can be produced, yet they may not meet end-user requirements. Recent advances demonstrate that post-training model alignment via human feedback can address some of these challenges. However, these methods are often confined to settings (such as generative AI) where humans can interpret model outputs and provide feedback. In traditional non-generative settings, where model outputs are numerical values or classes, detecting misalignment through single-sample outputs is highly challenging. In this paper we consider an alternative strategy. We propose interpreting model alignment through property testing, defining an aligned model $f$ as one belonging to a subset $\mathcal{P}$ of functions that exhibit specific desired behaviors. We focus on post-processing a pre-trained model $f$ to better align with $\mathcal{P}$ using conformal risk control. Specifically, we develop a general procedure for converting queries for a given property $\mathcal{P}$ to a collection of loss functions suitable for use in a conformal risk control algorithm. We prove a probabilistic guarantee that the resulting conformal interval around $f$ contains a function approximately satisfying $\mathcal{P}$. Given the capabilities of modern AI models with extensive parameters and training data, one might assume alignment issues will resolve naturally. However, increasing training data or parameters in a random feature model doesn't eliminate the need for alignment techniques when pre-training data is biased. We demonstrate our alignment methodology on supervised learning datasets for properties like monotonicity and concavity. Our flexible procedure can be applied to various desired properties.
The frequentist variability of Bayesian posterior expectations can provide meaningful measures of uncertainty even when models are misspecified. Classical methods to asymptotically approximate the frequentist covariance of Bayesian estimators such as the Laplace approximation and the nonparametric bootstrap can be practically inconvenient, since the Laplace approximation may require an intractable integral to compute the marginal log posterior, and the bootstrap requires computing the posterior for many different bootstrap datasets. We develop and explore the infinitesimal jackknife (IJ), an alternative method for computing asymptotic frequentist covariance of smooth functionals of exchangeable data, which is based on the "influence function" of robust statistics. We show that the influence function for posterior expectations has the form of a simple posterior covariance, and that the IJ covariance estimate is, in turn, easily computed from a single set of posterior samples. Under conditions similar to those required for a Bayesian central limit theorem to apply, we prove that the corresponding IJ covariance estimate is asymptotically equivalent to the Laplace approximation and the bootstrap. In the presence of nuisance parameters that may not obey a central limit theorem, we argue using a von Mises expansion that the IJ covariance is inconsistent, but can remain a good approximation to the limiting frequentist variance. We demonstrate the accuracy and computational benefits of the IJ covariance estimates with simulated and real-world experiments.
Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.