亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Medical image segmentation is a crucial task that relies on the ability to accurately identify and isolate regions of interest in medical images. Thereby, generative approaches allow to capture the statistical properties of segmentation masks that are dependent on the respective structures. In this work we propose a conditional score-based generative modeling framework to represent the signed distance function (SDF) leading to an implicit distribution of segmentation masks. The advantage of leveraging the SDF is a more natural distortion when compared to that of binary masks. By learning the score function of the conditional distribution of SDFs we can accurately sample from the distribution of segmentation masks, allowing for the evaluation of statistical quantities. Thus, this probabilistic representation allows for the generation of uncertainty maps represented by the variance, which can aid in further analysis and enhance the predictive robustness. We qualitatively and quantitatively illustrate competitive performance of the proposed method on a public nuclei and gland segmentation data set, highlighting its potential utility in medical image segmentation applications.

相關內容

At the core of the quest for a logic for PTime is a mismatch between algorithms making arbitrary choices and isomorphism-invariant logics. One approach to overcome this problem is witnessed symmetric choice. It allows for choices from definable orbits which are certified by definable witnessing automorphisms. We consider the extension of fixed-point logic with counting (IFPC) with witnessed symmetric choice (IFPC+WSC) and a further extension with an interpretation operator (IFPC+WSC+I). The latter operator evaluates a subformula in the structure defined by an interpretation. This structure possibly has other automorphisms exploitable by the WSC-operator. For similar extensions of pure fixed-point logic (IFP) it is known that IFP+WSCI simulates counting which IFP+WSC fails to do. For IFPC+WSC it is unknown whether the interpretation operator increases expressiveness and thus allows studying the relation between WSC and interpretations beyond counting. We separate IFPC+WSC from IFPC+WSCI by showing that IFPC+WSC is not closed under FO-interpretations. By the same argument, we answer an open question of Dawar and Richerby regarding non-witnessed symmetric choice in IFP. Additionally, we prove that nesting WSC-operators increases the expressiveness using the so-called CFI graphs. We show that if IFPC+WSC+I canonizes a particular class of base graphs, then it also canonizes the corresponding CFI graphs. This differs from various other logics, where CFI graphs provide difficult instances.

Visible-infrared person re-identification (VI-ReID) is a challenging task due to large cross-modality discrepancies and intra-class variations. Existing methods mainly focus on learning modality-shared representations by embedding different modalities into the same feature space. As a result, the learned feature emphasizes the common patterns across modalities while suppressing modality-specific and identity-aware information that is valuable for Re-ID. To address these issues, we propose a novel Modality Unifying Network (MUN) to explore a robust auxiliary modality for VI-ReID. First, the auxiliary modality is generated by combining the proposed cross-modality learner and intra-modality learner, which can dynamically model the modality-specific and modality-shared representations to alleviate both cross-modality and intra-modality variations. Second, by aligning identity centres across the three modalities, an identity alignment loss function is proposed to discover the discriminative feature representations. Third, a modality alignment loss is introduced to consistently reduce the distribution distance of visible and infrared images by modality prototype modeling. Extensive experiments on multiple public datasets demonstrate that the proposed method surpasses the current state-of-the-art methods by a significant margin.

The necessity of radix conversion of numeric data is an indispensable component in any complete analysis of digital computation. In this paper, we propose a binary encoding for mixed-radix digits. Second, a variant of rANS coding based on this conversion is given, which supports parallel decoding. The simulations show that the proposed coding in serial mode has a higher throughput than the baseline (with the speed-up factor about 2X) without loss of compression ratio, and it outperforms the existing 2-way interleaving implementation.

Semantic segmentation is crucial in remote sensing, where high-resolution satellite images are segmented into meaningful regions. Recent advancements in deep learning have significantly improved satellite image segmentation. However, most of these methods are typically trained in fully supervised settings that require high-quality pixel-level annotations, which are expensive and time-consuming to obtain. In this work, we present a weakly supervised learning algorithm to train semantic segmentation algorithms that only rely on query point annotations instead of full mask labels. Our proposed approach performs accurate semantic segmentation and improves efficiency by significantly reducing the cost and time required for manual annotation. Specifically, we generate superpixels and extend the query point labels into those superpixels that group similar meaningful semantics. Then, we train semantic segmentation models, supervised with images partially labeled with the superpixels pseudo-labels. We benchmark our weakly supervised training approach on an aerial image dataset and different semantic segmentation architectures, showing that we can reach competitive performance compared to fully supervised training while reducing the annotation effort.

Whole brain segmentation with magnetic resonance imaging (MRI) enables the non-invasive measurement of brain regions, including total intracranial volume (TICV) and posterior fossa volume (PFV). Enhancing the existing whole brain segmentation methodology to incorporate intracranial measurements offers a heightened level of comprehensiveness in the analysis of brain structures. Despite its potential, the task of generalizing deep learning techniques for intracranial measurements faces data availability constraints due to limited manually annotated atlases encompassing whole brain and TICV/PFV labels. In this paper, we enhancing the hierarchical transformer UNesT for whole brain segmentation to achieve segmenting whole brain with 133 classes and TICV/PFV simultaneously. To address the problem of data scarcity, the model is first pretrained on 4859 T1-weighted (T1w) 3D volumes sourced from 8 different sites. These volumes are processed through a multi-atlas segmentation pipeline for label generation, while TICV/PFV labels are unavailable. Subsequently, the model is finetuned with 45 T1w 3D volumes from Open Access Series Imaging Studies (OASIS) where both 133 whole brain classes and TICV/PFV labels are available. We evaluate our method with Dice similarity coefficients(DSC). We show that our model is able to conduct precise TICV/PFV estimation while maintaining the 132 brain regions performance at a comparable level. Code and trained model are available at: //github.com/MASILab/UNesT/wholebrainSeg.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

As a scene graph compactly summarizes the high-level content of an image in a structured and symbolic manner, the similarity between scene graphs of two images reflects the relevance of their contents. Based on this idea, we propose a novel approach for image-to-image retrieval using scene graph similarity measured by graph neural networks. In our approach, graph neural networks are trained to predict the proxy image relevance measure, computed from human-annotated captions using a pre-trained sentence similarity model. We collect and publish the dataset for image relevance measured by human annotators to evaluate retrieval algorithms. The collected dataset shows that our method agrees well with the human perception of image similarity than other competitive baselines.

Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司