亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Adversarial detection aims to determine whether a given sample is an adversarial one based on the discrepancy between natural and adversarial distributions. Unfortunately, estimating or comparing two data distributions is extremely difficult, especially in high-dimension spaces. Recently, the gradient of log probability density (a.k.a., score) w.r.t. the sample is used as an alternative statistic to compute. However, we find that the score is sensitive in identifying adversarial samples due to insufficient information with one sample only. In this paper, we propose a new statistic called expected perturbation score (EPS), which is essentially the expected score of a sample after various perturbations. Specifically, to obtain adequate information regarding one sample, we perturb it by adding various noises to capture its multi-view observations. We theoretically prove that EPS is a proper statistic to compute the discrepancy between two samples under mild conditions. In practice, we can use a pre-trained diffusion model to estimate EPS for each sample. Last, we propose an EPS-based adversarial detection (EPS-AD) method, in which we develop EPS-based maximum mean discrepancy (MMD) as a metric to measure the discrepancy between the test sample and natural samples. We also prove that the EPS-based MMD between natural and adversarial samples is larger than that among natural samples. Extensive experiments show the superior adversarial detection performance of our EPS-AD.

相關內容

Data valuation is critical in machine learning, as it helps enhance model transparency and protect data properties. Existing data valuation methods have primarily focused on discriminative models, neglecting deep generative models that have recently gained considerable attention. Similar to discriminative models, there is an urgent need to assess data contributions in deep generative models as well. However, previous data valuation approaches mainly relied on discriminative model performance metrics and required model retraining. Consequently, they cannot be applied directly and efficiently to recent deep generative models, such as generative adversarial networks and diffusion models, in practice. To bridge this gap, we formulate the data valuation problem in generative models from a similarity-matching perspective. Specifically, we introduce Generative Model Valuator (GMValuator), the first model-agnostic approach for any generative models, designed to provide data valuation for generation tasks. We have conducted extensive experiments to demonstrate the effectiveness of the proposed method. To the best of their knowledge, GMValuator is the first work that offers a training-free, post-hoc data valuation strategy for deep generative models.

Several membership inference (MI) attacks have been proposed to audit a target DNN. Given a set of subjects, MI attacks tell which subjects the target DNN has seen during training. This work focuses on the post-training MI attacks emphasizing high confidence membership detection -- True Positive Rates (TPR) at low False Positive Rates (FPR). Current works in this category -- likelihood ratio attack (LiRA) and enhanced MI attack (EMIA) -- only perform well on complex datasets (e.g., CIFAR-10 and Imagenet) where the target DNN overfits its train set, but perform poorly on simpler datasets (0% TPR by both attacks on Fashion-MNIST, 2% and 0% TPR respectively by LiRA and EMIA on MNIST at 1% FPR). To address this, firstly, we unify current MI attacks by presenting a framework divided into three stages -- preparation, indication and decision. Secondly, we utilize the framework to propose two novel attacks: (1) Adversarial Membership Inference Attack (AMIA) efficiently utilizes the membership and the non-membership information of the subjects while adversarially minimizing a novel loss function, achieving 6% TPR on both Fashion-MNIST and MNIST datasets; and (2) Enhanced AMIA (E-AMIA) combines EMIA and AMIA to achieve 8% and 4% TPRs on Fashion-MNIST and MNIST datasets respectively, at 1% FPR. Thirdly, we introduce two novel augmented indicators that positively leverage the loss information in the Gaussian neighborhood of a subject. This improves TPR of all four attacks on average by 2.5% and 0.25% respectively on Fashion-MNIST and MNIST datasets at 1% FPR. Finally, we propose simple, yet novel, evaluation metric, the running TPR average (RTA) at a given FPR, that better distinguishes different MI attacks in the low FPR region. We also show that AMIA and E-AMIA are more transferable to the unknown DNNs (other than the target DNN) and are more robust to DP-SGD training as compared to LiRA and EMIA.

In this paper, we provide a novel framework for the analysis of generalization error of first-order optimization algorithms for statistical learning when the gradient can only be accessed through partial observations given by an oracle. Our analysis relies on the regularity of the gradient w.r.t. the data samples, and allows to derive near matching upper and lower bounds for the generalization error of multiple learning problems, including supervised learning, transfer learning, robust learning, distributed learning and communication efficient learning using gradient quantization. These results hold for smooth and strongly-convex optimization problems, as well as smooth non-convex optimization problems verifying a Polyak-Lojasiewicz assumption. In particular, our upper and lower bounds depend on a novel quantity that extends the notion of conditional standard deviation, and is a measure of the extent to which the gradient can be approximated by having access to the oracle. As a consequence, our analysis provides a precise meaning to the intuition that optimization of the statistical learning objective is as hard as the estimation of its gradient. Finally, we show that, in the case of standard supervised learning, mini-batch gradient descent with increasing batch sizes and a warm start can reach a generalization error that is optimal up to a multiplicative factor, thus motivating the use of this optimization scheme in practical applications.

By treating users' interactions as a user-item graph, graph learning models have been widely deployed in Collaborative Filtering(CF) based recommendation. Recently, researchers have introduced Graph Contrastive Learning(GCL) techniques into CF to alleviate the sparse supervision issue, which first constructs contrastive views by data augmentations and then provides self-supervised signals by maximizing the mutual information between contrastive views. Despite the effectiveness, we argue that current GCL-based recommendation models are still limited as current data augmentation techniques, either structure augmentation or feature augmentation. First, structure augmentation randomly dropout nodes or edges, which is easy to destroy the intrinsic nature of the user-item graph. Second, feature augmentation imposes the same scale noise augmentation on each node, which neglects the unique characteristics of nodes on the graph. To tackle the above limitations, we propose a novel Variational Graph Generative-Contrastive Learning(VGCL) framework for recommendation. Specifically, we leverage variational graph reconstruction to estimate a Gaussian distribution of each node, then generate multiple contrastive views through multiple samplings from the estimated distributions, which builds a bridge between generative and contrastive learning. Besides, the estimated variances are tailored to each node, which regulates the scale of contrastive loss for each node on optimization. Considering the similarity of the estimated distributions, we propose a cluster-aware twofold contrastive learning, a node-level to encourage consistency of a node's contrastive views and a cluster-level to encourage consistency of nodes in a cluster. Finally, extensive experimental results on three public datasets clearly demonstrate the effectiveness of the proposed model.

Deep neural networks (DNNs) may suffer from significantly degenerated performance when the training and test data are of different underlying distributions. Despite the importance of model generalization to out-of-distribution (OOD) data, the accuracy of state-of-the-art (SOTA) models on OOD data can plummet. Recent work has demonstrated that regular or off-manifold adversarial examples, as a special case of data augmentation, can be used to improve OOD generalization. Inspired by this, we theoretically prove that on-manifold adversarial examples can better benefit OOD generalization. Nevertheless, it is nontrivial to generate on-manifold adversarial examples because the real manifold is generally complex. To address this issue, we proposed a novel method of Augmenting data with Adversarial examples via a Wavelet module (AdvWavAug), an on-manifold adversarial data augmentation technique that is simple to implement. In particular, we project a benign image into a wavelet domain. With the assistance of the sparsity characteristic of wavelet transformation, we can modify an image on the estimated data manifold. We conduct adversarial augmentation based on AdvProp training framework. Extensive experiments on different models and different datasets, including ImageNet and its distorted versions, demonstrate that our method can improve model generalization, especially on OOD data. By integrating AdvWavAug into the training process, we have achieved SOTA results on some recent transformer-based models.

Sequential recommendation as an emerging topic has attracted increasing attention due to its important practical significance. Models based on deep learning and attention mechanism have achieved good performance in sequential recommendation. Recently, the generative models based on Variational Autoencoder (VAE) have shown the unique advantage in collaborative filtering. In particular, the sequential VAE model as a recurrent version of VAE can effectively capture temporal dependencies among items in user sequence and perform sequential recommendation. However, VAE-based models suffer from a common limitation that the representational ability of the obtained approximate posterior distribution is limited, resulting in lower quality of generated samples. This is especially true for generating sequences. To solve the above problem, in this work, we propose a novel method called Adversarial and Contrastive Variational Autoencoder (ACVAE) for sequential recommendation. Specifically, we first introduce the adversarial training for sequence generation under the Adversarial Variational Bayes (AVB) framework, which enables our model to generate high-quality latent variables. Then, we employ the contrastive loss. The latent variables will be able to learn more personalized and salient characteristics by minimizing the contrastive loss. Besides, when encoding the sequence, we apply a recurrent and convolutional structure to capture global and local relationships in the sequence. Finally, we conduct extensive experiments on four real-world datasets. The experimental results show that our proposed ACVAE model outperforms other state-of-the-art methods.

While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

The prevalence of networked sensors and actuators in many real-world systems such as smart buildings, factories, power plants, and data centers generate substantial amounts of multivariate time series data for these systems. The rich sensor data can be continuously monitored for intrusion events through anomaly detection. However, conventional threshold-based anomaly detection methods are inadequate due to the dynamic complexities of these systems, while supervised machine learning methods are unable to exploit the large amounts of data due to the lack of labeled data. On the other hand, current unsupervised machine learning approaches have not fully exploited the spatial-temporal correlation and other dependencies amongst the multiple variables (sensors/actuators) in the system for detecting anomalies. In this work, we propose an unsupervised multivariate anomaly detection method based on Generative Adversarial Networks (GANs). Instead of treating each data stream independently, our proposed MAD-GAN framework considers the entire variable set concurrently to capture the latent interactions amongst the variables. We also fully exploit both the generator and discriminator produced by the GAN, using a novel anomaly score called DR-score to detect anomalies by discrimination and reconstruction. We have tested our proposed MAD-GAN using two recent datasets collected from real-world CPS: the Secure Water Treatment (SWaT) and the Water Distribution (WADI) datasets. Our experimental results showed that the proposed MAD-GAN is effective in reporting anomalies caused by various cyber-intrusions compared in these complex real-world systems.

We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan

北京阿比特科技有限公司