Learning in multi-agent systems is highly challenging due to several factors including the non-stationarity introduced by agents' interactions and the combinatorial nature of their state and action spaces. In particular, we consider the Mean-Field Control (MFC) problem which assumes an asymptotically infinite population of identical agents that aim to collaboratively maximize the collective reward. In many cases, solutions of an MFC problem are good approximations for large systems, hence, efficient learning for MFC is valuable for the analogous discrete agent setting with many agents. Specifically, we focus on the case of unknown system dynamics where the goal is to simultaneously optimize for the rewards and learn from experience. We propose an efficient model-based reinforcement learning algorithm, $M^3-UCRL$, that runs in episodes, balances between exploration and exploitation during policy learning, and provably solves this problem. Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC, obtained via a novel mean-field type analysis. To learn the system's dynamics, $M^3-UCRL$ can be instantiated with various statistical models, e.g., neural networks or Gaussian Processes. Moreover, we provide a practical parametrization of the core optimization problem that facilitates gradient-based optimization techniques when combined with differentiable dynamics approximation methods such as neural networks.
Collecting and leveraging data with good coverage properties plays a crucial role in different aspects of reinforcement learning (RL), including reward-free exploration and offline learning. However, the notion of "good coverage" really depends on the application at hand, as data suitable for one context may not be so for another. In this paper, we formalize the problem of active coverage in episodic Markov decision processes (MDPs), where the goal is to interact with the environment so as to fulfill given sampling requirements. This framework is sufficiently flexible to specify any desired coverage property, making it applicable to any problem that involves online exploration. Our main contribution is an instance-dependent lower bound on the sample complexity of active coverage and a simple game-theoretic algorithm, CovGame, that nearly matches it. We then show that CovGame can be used as a building block to solve different PAC RL tasks. In particular, we obtain a simple algorithm for PAC reward-free exploration with an instance-dependent sample complexity that, in certain MDPs which are "easy to explore", is lower than the minimax one. By further coupling this exploration algorithm with a new technique to do implicit eliminations in policy space, we obtain a computationally-efficient algorithm for best-policy identification whose instance-dependent sample complexity scales with gaps between policy values.
Motivated by the novel paradigm developed by Van Roy and coauthors for reinforcement learning in arbitrary non-Markovian environments, we propose a related formulation and explicitly pin down the error caused by non-Markovianity of observations when the Q-learning algorithm is applied on this formulation. Based on this observation, we propose that the criterion for agent design should be to seek good approximations for certain conditional laws. Inspired by classical stochastic control, we show that our problem reduces to that of recursive computation of approximate sufficient statistics. This leads to an autoencoder-based scheme for agent design which is then numerically tested on partially observed reinforcement learning environments.
Batch reinforcement learning (RL) aims at leveraging pre-collected data to find an optimal policy that maximizes the expected total rewards in a dynamic environment. Nearly all existing algorithms rely on the absolutely continuous assumption on the distribution induced by target policies with respect to the data distribution, so that the batch data can be used to calibrate target policies via the change of measure. However, the absolute continuity assumption could be violated in practice (e.g., no-overlap support), especially when the state-action space is large or continuous. In this paper, we propose a new batch RL algorithm without requiring absolute continuity in the setting of an infinite-horizon Markov decision process with continuous states and actions. We call our algorithm STEEL: SingulariTy-awarE rEinforcement Learning. Our algorithm is motivated by a new error analysis on off-policy evaluation, where we use maximum mean discrepancy, together with distributionally robust optimization, to characterize the error of off-policy evaluation caused by the possible singularity and to enable model extrapolation. By leveraging the idea of pessimism and under some mild conditions, we derive a finite-sample regret guarantee for our proposed algorithm without imposing absolute continuity. Compared with existing algorithms, by requiring only minimal data-coverage assumption, STEEL significantly improves the applicability and robustness of batch RL. Extensive simulation studies and one real experiment on personalized pricing demonstrate the superior performance of our method in dealing with possible singularity in batch RL.
Reinforcement learning often needs to deal with the exponential growth of states and actions when exploring optimal control in high-dimensional spaces (often known as the curse of dimensionality). In this work, we address this issue by learning the inherent structure of action-wise similar MDP to appropriately balance the performance degradation versus sample/computational complexity. In particular, we partition the action spaces into multiple groups based on the similarity in transition distribution and reward function, and build a linear decomposition model to capture the difference between the intra-group transition kernel and the intra-group rewards. Both our theoretical analysis and experiments reveal a \emph{surprising and counter-intuitive result}: while a more refined grouping strategy can reduce the approximation error caused by treating actions in the same group as identical, it also leads to increased estimation error when the size of samples or the computation resources is limited. This finding highlights the grouping strategy as a new degree of freedom that can be optimized to minimize the overall performance loss. To address this issue, we formulate a general optimization problem for determining the optimal grouping strategy, which strikes a balance between performance loss and sample/computational complexity. We further propose a computationally efficient method for selecting a nearly-optimal grouping strategy, which maintains its computational complexity independent of the size of the action space.
Federated learning is a distributed machine learning technology, which realizes the balance between data privacy protection and data sharing computing. To protect data privacy, feder-ated learning learns shared models by locally executing distributed training on participating devices and aggregating local models into global models. There is a problem in federated learning, that is, the negative impact caused by the non-independent and identical distribu-tion of data across different user terminals. In order to alleviate this problem, this paper pro-poses a strengthened federation aggregation method based on adaptive OPTICS clustering. Specifically, this method perceives the clustering environment as a Markov decision process, and models the adjustment process of parameter search direction, so as to find the best clus-tering parameters to achieve the best federated aggregation method. The core contribution of this paper is to propose an adaptive OPTICS clustering algorithm for federated learning. The algorithm combines OPTICS clustering and adaptive learning technology, and can effective-ly deal with the problem of non-independent and identically distributed data across different user terminals. By perceiving the clustering environment as a Markov decision process, the goal is to find the best parameters of the OPTICS cluster without artificial assistance, so as to obtain the best federated aggregation method and achieve better performance. The reliability and practicability of this method have been verified on the experimental data, and its effec-tiveness and superiority have been proved.
The next step for intelligent dialog agents is to escape their role as silent bystanders and become proactive. Well-defined proactive behavior may improve human-machine cooperation, as the agent takes a more active role during interaction and takes off responsibility from the user. However, proactivity is a double-edged sword because poorly executed pre-emptive actions may have a devastating effect not only on the task outcome but also on the relationship with the user. For designing adequate proactive dialog strategies, we propose a novel approach including both social as well as task-relevant features in the dialog. Here, the primary goal is to optimize proactive behavior so that it is task-oriented - this implies high task success and efficiency - while also being socially effective by fostering user trust. Including both aspects in the reward function for training a proactive dialog agent using reinforcement learning showed the benefit of our approach for more successful human-machine cooperation.
Reinforcement Learning (RL) has opened up new opportunities to enhance existing smart systems that generally include a complex decision-making process. However, modern RL algorithms, e.g., Deep Q-Networks (DQN), are based on deep neural networks, resulting in high computational costs. In this paper, we propose QHD, an off-policy value-based Hyperdimensional Reinforcement Learning, that mimics brain properties toward robust and real-time learning. QHD relies on a lightweight brain-inspired model to learn an optimal policy in an unknown environment. On both desktop and power-limited embedded platforms, QHD achieves significantly better overall efficiency than DQN while providing higher or comparable rewards. QHD is also suitable for highly-efficient reinforcement learning with great potential for online and real-time learning. Our solution supports a small experience replay batch size that provides 12.3 times speedup compared to DQN while ensuring minimal quality loss. Our evaluation shows QHD capability for real-time learning, providing 34.6 times speedup and significantly better quality of learning than DQN.
Model-based reinforcement learning (MBRL) is a sample efficient technique to obtain control policies, yet unavoidable modeling errors often lead performance deterioration. The model in MBRL is often solely fitted to reconstruct dynamics, state observations in particular, while the impact of model error on the policy is not captured by the training objective. This leads to a mismatch between the intended goal of MBRL, enabling good policy and value learning, and the target of the loss function employed in practice, future state prediction. Naive intuition would suggest that value-aware model learning would fix this problem and, indeed, several solutions to this objective mismatch problem have been proposed based on theoretical analysis. However, they tend to be inferior in practice to commonly used maximum likelihood (MLE) based approaches. In this paper we propose the Value-gradient weighted Model Learning (VaGraM), a novel method for value-aware model learning which improves the performance of MBRL in challenging settings, such as small model capacity and the presence of distracting state dimensions. We analyze both MLE and value-aware approaches and demonstrate how they fail to account for exploration and the behavior of function approximation when learning value-aware models and highlight the additional goals that must be met to stabilize optimization in the deep learning setting. We verify our analysis by showing that our loss function is able to achieve high returns on the Mujoco benchmark suite while being more robust than maximum likelihood based approaches.
While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.
Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.