亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Reciprocity-based time-division duplex (TDD) Massive MIMO (multiple-input multiple-output) systems utilize channel estimates obtained in the uplink to perform precoding in the downlink. However, this method has been criticized of breaking down, in the sense that the channel estimates are not good enough to spatially separate multiple user terminals, at low uplink reference signal signal-to-noise ratios, due to insufficient channel estimation quality. Instead, codebook-based downlink precoding has been advocated for as an alternative solution in order to bypass this problem. We analyze this problem by considering a "grid-of-beams world" with a finite number of possible downlink channel realizations. Assuming that the terminal accurately can detect the downlink channel, we show that in the case where reciprocity holds, carefully designing a mapping between the downlink channel and the uplink reference signals will perform better than both the conventional TDD Massive MIMO and frequency-division duplex (FDD) Massive MIMO approach. We derive elegant metrics for designing this mapping, and further, we propose algorithms that find good sequence mappings.

相關內容

Current multi-category Multiple Object Tracking (MOT) metrics use class labels to group tracking results for per-class evaluation. Similarly, MOT methods typically only associate objects with the same class predictions. These two prevalent strategies in MOT implicitly assume that the classification performance is near-perfect. However, this is far from the case in recent large-scale MOT datasets, which contain large numbers of classes with many rare or semantically similar categories. Therefore, the resulting inaccurate classification leads to sub-optimal tracking and inadequate benchmarking of trackers. We address these issues by disentangling classification from tracking. We introduce a new metric, Track Every Thing Accuracy (TETA), breaking tracking measurement into three sub-factors: localization, association, and classification, allowing comprehensive benchmarking of tracking performance even under inaccurate classification. TETA also deals with the challenging incomplete annotation problem in large-scale tracking datasets. We further introduce a Track Every Thing tracker (TETer), that performs association using Class Exemplar Matching (CEM). Our experiments show that TETA evaluates trackers more comprehensively, and TETer achieves significant improvements on the challenging large-scale datasets BDD100K and TAO compared to the state-of-the-art.

Throughput is a main performance objective in communication networks. This paper considers a fundamental maximum throughput routing problem -- the all-or-nothing multicommodity flow (ANF) problem -- in arbitrary directed graphs and in the practically relevant but challenging setting where demands can be (much) larger than the edge capacities. Hence, in addition to assigning requests to valid flows for each routed commodity, an admission control mechanism is required which prevents overloading the network when routing commodities. We make several contributions. On the theoretical side we obtain substantially improved bi-criteria approximation algorithms for this NP-hard problem. We present two non-trivial linear programming relaxations and show how to convert their fractional solutions into integer solutions via randomized rounding. One is an exponential-size formulation (solvable in polynomial time using a separation oracle) that considers a "packing" view and allows a more flexible approach, while the other is a compact (polynomial-size) edge-flow formulation that allows for easy solving via standard LP solvers. We obtain a polynomial-time randomized algorithm that yields an arbitrarily good approximation on the weighted throughput, while violating the edge capacity constraints by only a small multiplicative factor. We also describe a deterministic rounding algorithm by derandomization, using the method of pessimistic estimators. We complement our theoretical results with a proof of concept empirical evaluation.

This paper considers the problem of enabling the user to modify the path of a telepresence robot. The robot is capable of autonomously navigating to a goal predefined by the user, but the user might still want to modify the path, for example, to go further away from other people, or to go closer to landmarks she wants to see on the way. We propose Human-Influenced Dynamic Window Approach (HI-DWA), a shared control method aimed for telepresence robots based on Dynamic Window Approach (DWA) that allows the user to influence the control input given to the robot. To verify the proposed method, we performed a user study (N=32) in Virtual Reality (VR) to compare HI-DWA with switching between autonomous navigation and manual control for controlling a simulated telepresence robot moving in a virtual environment. Results showed that users reached their goal faster using HI-DWA controller and found it easier to use. Preference between the two methods was split equally. Qualitative analysis revealed that a major reason for the participants that preferred switching between two modes was the feeling of control. We also analyzed the effect of different input methods, joystick and gesture, on the preference and perceived workload.

Deep learning has been widely applied for the channel state information (CSI) feedback in frequency division duplexing (FDD) massive multiple-input multiple-output (MIMO) system. For the typical supervised training of the feedback model, the requirements of large amounts of task-specific labeled data can hardly be satisfied, and the huge training costs and storage usage of the model in multiple scenarios are hindrance for model application. In this letter, a multi-task learning-based approach is proposed to improve the feasibility of the feedback network. An encoder-shared feedback architecture and the corresponding training scheme are further proposed to facilitate the implementation of the multi-task learning approach. The experimental results indicate that the proposed multi-task learning approach can achieve comprehensive feedback performance with considerable reduction of training cost and storage usage of the feedback model.

Traffic signal control (TSC) is a high-stakes domain that is growing in importance as traffic volume grows globally. An increasing number of works are applying reinforcement learning (RL) to TSC; RL can draw on an abundance of traffic data to improve signalling efficiency. However, RL-based signal controllers have never been deployed. In this work, we provide the first review of challenges that must be addressed before RL can be deployed for TSC. We focus on four challenges involving (1) uncertainty in detection, (2) reliability of communications, (3) compliance and interpretability, and (4) heterogeneous road users. We show that the literature on RL-based TSC has made some progress towards addressing each challenge. However, more work should take a systems thinking approach that considers the impacts of other pipeline components on RL.

As an essential element for log analysis, the system kernel-based event can be effectively employed in the hybrid computing environment integrated with cloud, edge, and endpoint for intelligent threat detection. However, the issues of massiveness, heterogeneity, and semantic redundancy have become the biggest challenges in event-based security analysis. Unfortunately, there is no comprehensive tool to collect and analyze its kernel logs for the widely used OS Windows. This paper proposes a kernel-based event log collector named Kellect, a multi-thread tool built on ETW(events tracing for Windwos). Kellect can provide very compressed but most valuable kernel event data for general-purpose analysis on software anomaly detection. Experimental results in real-world show that Kellect can collect kernel event logs generated from FileIO, Process, Thread, Images, Register, and Network, with efficient and lossless. The total performance is three times higher than that of existing tools. The CPU cost stays only at around 1%, while the memory consumption is less than 50MB. As an important application case, the data collected by Kellect is proved to be utilized to build proper model to detect APT after transformed into provenance graphs with complete semantics. At last, a large experiments for the full techniques from ATT&CK are conducted, and the full relevant log dataset is collected using Kellect. To our best knowledge, it is the first precise and public benchmark sample dataset for kernel event-based APT detection.

The Kalman filter has been adopted in acoustic echo cancellation due to its robustness to double-talk, fast convergence, and good steady-state performance. The performance of Kalman filter is closely related to the estimation accuracy of the state noise covariance and the observation noise covariance. The estimation error may lead to unacceptable results, especially when the echo path suffers abrupt changes, the tracking performance of the Kalman filter could be degraded significantly. In this paper, we propose the neural Kalman filtering (NKF), which uses neural networks to implicitly model the covariance of the state noise and observation noise and to output the Kalman gain in real-time. Experimental results on both synthetic test sets and real-recorded test sets show that, the proposed NKF has superior convergence and re-convergence performance while ensuring low near-end speech degradation comparing with the state-of-the-art model-based methods. Moreover, the model size of the proposed NKF is merely 5.3 K and the RTF is as low as 0.09, which indicates that it can be deployed in low-resource platforms.

This work introduces a data-driven control approach for stabilizing high-dimensional dynamical systems from scarce data. The proposed context-aware controller inference approach is based on the observation that controllers need to act locally only on the unstable dynamics to stabilize systems. This means it is sufficient to learn the unstable dynamics alone, which are typically confined to much lower dimensional spaces than the high-dimensional state spaces of all system dynamics and thus few data samples are sufficient to identify them. Numerical experiments demonstrate that context-aware controller inference learns stabilizing controllers from orders of magnitude fewer data samples than traditional data-driven control techniques and variants of reinforcement learning. The experiments further show that the low data requirements of context-aware controller inference are especially beneficial in data-scarce engineering problems with complex physics, for which learning complete system dynamics is often intractable in terms of data and training costs.

Volatility clustering is a common phenomenon in financial time series. Typically, linear models can be used to describe the temporal autocorrelation of the (logarithmic) variance of returns. Considering the difficulty in estimating this model, we construct a Dynamic Bayesian Network, which utilizes the conjugate prior relation of normal-gamma and gamma-gamma, so that its posterior form locally remains unchanged at each node. This makes it possible to find approximate solutions using variational methods quickly. Furthermore, we ensure that the volatility expressed by the model is an independent incremental process after inserting dummy gamma nodes between adjacent time steps. We have found that this model has two advantages: 1) It can be proved that it can express heavier tails than Gaussians, i.e., have positive excess kurtosis, compared to popular linear models. 2) If the variational inference(VI) is used for state estimation, it runs much faster than Monte Carlo(MC) methods since the calculation of the posterior uses only basic arithmetic operations. And its convergence process is deterministic. We tested the model, named Gam-Chain, using recent Crypto, Nasdaq, and Forex records of varying resolutions. The results show that: 1) In the same case of using MC, this model can achieve comparable state estimation results with the regular lognormal chain. 2) In the case of only using VI, this model can obtain accuracy that are slightly worse than MC, but still acceptable in practice; 3) Only using VI, the running time of Gam-Chain, under the most conservative settings, can be reduced to below 20% of that based on the lognormal chain via MC.

There is a resurgent interest in developing intelligent open-domain dialog systems due to the availability of large amounts of conversational data and the recent progress on neural approaches to conversational AI. Unlike traditional task-oriented bots, an open-domain dialog system aims to establish long-term connections with users by satisfying the human need for communication, affection, and social belonging. This paper reviews the recent works on neural approaches that are devoted to addressing three challenges in developing such systems: semantics, consistency, and interactiveness. Semantics requires a dialog system to not only understand the content of the dialog but also identify user's social needs during the conversation. Consistency requires the system to demonstrate a consistent personality to win users trust and gain their long-term confidence. Interactiveness refers to the system's ability to generate interpersonal responses to achieve particular social goals such as entertainment, conforming, and task completion. The works we select to present here is based on our unique views and are by no means complete. Nevertheless, we hope that the discussion will inspire new research in developing more intelligent dialog systems.

北京阿比特科技有限公司