Continuous optimization based motion planners require deciding on a maneuver homotopy before optimizing the trajectory. Under uncertainty, maneuver intentions of other participants can be unclear, and the vehicle might not be able to decide on the most suitable maneuver. This work introduces a method that incorporates multiple maneuver preferences in planning. It optimizes the trajectory by considering weighted maneuver preferences together with uncertainties ranging from perception to prediction while ensuring the feasibility of a chance-constrained fallback option. Evaluations in both driving experiments and simulation studies show enhanced interaction capabilities and comfort levels compared to conventional planners, which consider only a single maneuver.
Neural implicit scene representations have recently shown encouraging results in dense visual SLAM. However, existing methods produce low-quality scene reconstruction and low-accuracy localization performance when scaling up to large indoor scenes and long sequences. These limitations are mainly due to their single, global radiance field with finite capacity, which does not adapt to large scenarios. Their end-to-end pose networks are also not robust enough with the growth of cumulative errors in large scenes. To this end, we present PLGSLAM, a neural visual SLAM system which performs high-fidelity surface reconstruction and robust camera tracking in real time. To handle large-scale indoor scenes, PLGSLAM proposes a progressive scene representation method which dynamically allocates new local scene representation trained with frames within a local sliding window. This allows us to scale up to larger indoor scenes and improves robustness (even under pose drifts). In local scene representation, PLGSLAM utilizes tri-planes for local high-frequency features. We also incorporate multi-layer perceptron (MLP) networks for the low-frequency feature, smoothness, and scene completion in unobserved areas. Moreover, we propose local-to-global bundle adjustment method with a global keyframe database to address the increased pose drifts on long sequences. Experimental results demonstrate that PLGSLAM achieves state-of-the-art scene reconstruction results and tracking performance across various datasets and scenarios (both in small and large-scale indoor environments). The code will be open-sourced upon paper acceptance.
Open-World Compositional Zero-shot Learning (OW-CZSL) aims to recognize novel compositions of state and object primitives in images with no priors on the compositional space, which induces a tremendously large output space containing all possible state-object compositions. Existing works either learn the joint compositional state-object embedding or predict simple primitives with separate classifiers. However, the former heavily relies on external word embedding methods, and the latter ignores the interactions of interdependent primitives, respectively. In this paper, we revisit the primitive prediction approach and propose a novel method, termed Progressive Cross-primitive Compatibility (ProCC), to mimic the human learning process for OW-CZSL tasks. Specifically, the cross-primitive compatibility module explicitly learns to model the interactions of state and object features with the trainable memory units, which efficiently acquires cross-primitive visual attention to reason high-feasibility compositions, without the aid of external knowledge. Moreover, considering the partial-supervision setting (pCZSL) as well as the imbalance issue of multiple task prediction, we design a progressive training paradigm to enable the primitive classifiers to interact to obtain discriminative information in an easy-to-hard manner. Extensive experiments on three widely used benchmark datasets demonstrate that our method outperforms other representative methods on both OW-CZSL and pCZSL settings by large margins.
Integrated sensing and communication (ISAC) has the advantages of efficient spectrum utilization and low hardware cost. It is promising to be implemented in the fifth-generation-advanced (5G-A) and sixth-generation (6G) mobile communication systems, having the potential to be applied in intelligent applications requiring both communication and high-accurate sensing capabilities. As the fundamental technology of ISAC, ISAC signal directly impacts the performance of sensing and communication. This article systematically reviews the literature on ISAC signals from the perspective of mobile communication systems, including ISAC signal design, ISAC signal processing algorithms and ISAC signal optimization. We first review the ISAC signal design based on 5G, 5G-A and 6G mobile communication systems. Then, radar signal processing methods are reviewed for ISAC signals, mainly including the channel information matrix method, spectrum lines estimator method and super resolution method. In terms of signal optimization, we summarize peak-to-average power ratio (PAPR) optimization, interference management, and adaptive signal optimization for ISAC signals. This article may provide the guidelines for the research of ISAC signals in 5G-A and 6G mobile communication systems.
Research into dynamic 3D scene understanding has primarily focused on short-term change tracking from dense observations, while little attention has been paid to long-term changes with sparse observations. We address this gap with MoRE, a novel approach for multi-object relocalization and reconstruction in evolving environments. We view these environments as "living scenes" and consider the problem of transforming scans taken at different points in time into a 3D reconstruction of the object instances, whose accuracy and completeness increase over time. At the core of our method lies an SE(3)-equivariant representation in a single encoder-decoder network, trained on synthetic data. This representation enables us to seamlessly tackle instance matching, registration, and reconstruction. We also introduce a joint optimization algorithm that facilitates the accumulation of point clouds originating from the same instance across multiple scans taken at different points in time. We validate our method on synthetic and real-world data and demonstrate state-of-the-art performance in both end-to-end performance and individual subtasks.
Humans instinctively know how to neglect details when it comes to solve complex decision making problems in environments with unforeseeable variations. This abstraction process seems to be a vital property for most biological systems and helps to 'abstract away' unnecessary details and boost generalisation. In this work we introduce the dispatcher/ executor principle for the design of multi-task Reinforcement Learning controllers. It suggests to partition the controller in two entities, one that understands the task (the dispatcher) and one that computes the controls for the specific device (the executor) - and to connect these two by a strongly regularizing communication channel. The core rationale behind this position paper is that changes in structure and design principles can improve generalisation properties and drastically enforce data-efficiency. It is in some sense a 'yes, and ...' response to the current trend of using large neural networks trained on vast amounts of data and bet on emerging generalisation properties. While we agree on the power of scaling - in the sense of Sutton's 'bitter lesson' - we will give some evidence, that considering structure and adding design principles can be a valuable and critical component in particular when data is not abundant and infinite, but is a precious resource.
The attention module is the key component in Transformers. While the global attention mechanism offers high expressiveness, its excessive computational cost restricts its applicability in various scenarios. In this paper, we propose a novel attention paradigm, Agent Attention, to strike a favorable balance between computational efficiency and representation power. Specifically, the Agent Attention, denoted as a quadruple $(Q, A, K, V)$, introduces an additional set of agent tokens $A$ into the conventional attention module. The agent tokens first act as the agent for the query tokens $Q$ to aggregate information from $K$ and $V$, and then broadcast the information back to $Q$. Given the number of agent tokens can be designed to be much smaller than the number of query tokens, the agent attention is significantly more efficient than the widely adopted Softmax attention, while preserving global context modelling capability. Interestingly, we show that the proposed agent attention is equivalent to a generalized form of linear attention. Therefore, agent attention seamlessly integrates the powerful Softmax attention and the highly efficient linear attention. Extensive experiments demonstrate the effectiveness of agent attention with various vision Transformers and across diverse vision tasks, including image classification, object detection, semantic segmentation and image generation. Notably, agent attention has shown remarkable performance in high-resolution scenarios, owning to its linear attention nature. For instance, when applied to Stable Diffusion, our agent attention accelerates generation and substantially enhances image generation quality without any additional training. Code is available at //github.com/LeapLabTHU/Agent-Attention.
We derive a pseudo-differential factorization of the wave operator with fractional attenuation. This factorization allows us to approximately solve the Helmholtz equation via a two-way (transmission and reflection) sweeping scheme tailored to high-frequency wave fields. We provide explicitly the three highest order terms of the pseudo-differential expansion to incorporate the well-known square-root first order symbol for wave propagation, the zeroth order symbol for amplitude modulation due to changes in wave speed and damping, and the next symbol to model fractional attenuation. We also propose wide-angle Pad\'e approximations for the pseudo-differential operators corresponding to these three highest order symbols. Our analysis provides insights regarding the role played by the frequency and the Pad\'e approximations in the estimation of error bounds. We also provide a proof-of-concept numerical implementation of the proposed method and test the error estimates numerically.
Table reasoning has shown remarkable progress in a wide range of table-based tasks. These challenging tasks require reasoning over both free-form natural language (NL) questions and semi-structured tabular data. However, previous table reasoning solutions suffer from significant performance degradation on "huge" tables. In addition, most existing methods struggle to reason over complex questions since they lack essential information or they are scattered in different places. To alleviate these challenges, we exploit a table provider, namely TAP4LLM, on versatile sampling, augmentation, and packing methods to achieve effective semi-structured data reasoning using large language models (LLMs), which 1) decompose raw tables into sub-tables with specific rows or columns based on the rules or semantic similarity; 2) augment table information by extracting semantic and statistical metadata from raw tables while retrieving relevant knowledge from trustworthy knowledge sources (e.g., Wolfram Alpha, Wikipedia); 3) pack sampled tables with augmented knowledge into sequence prompts for LLMs reasoning while balancing the token allocation trade-off. We show that TAP4LLM allows for different components as plug-ins, enhancing LLMs' understanding of structured data in diverse tabular tasks.
Traditional robotic systems require complex implementations that are not always accessible or easy to use for Human-Robot Interaction (HRI) application developers. With the aim of simplifying the implementation of HRI applications, this paper introduces a novel real-time operating system (RTOS) designed for customizable HRI - RoboSync. By creating multi-level abstraction layers, the system enables users to define complex emotional and behavioral models without needing deep technical expertise. The system's modular architecture comprises a behavior modeling layer, a machine learning plugin configuration layer, a sensor checks customization layer, a scheduler that fits the need of HRI, and a communication and synchronization layer. This approach not only promotes ease of use without highly specialized skills but also ensures real-time responsiveness and adaptability. The primary functionality of the RTOS has been implemented for proof of concept and was tested on a CortexM4 microcontroller, demonstrating its potential for a wide range of lightweight simple-to-implement social robotics applications.
Word2Vec remains one of the highly-impactful innovations in the field of Natural Language Processing (NLP) that represents latent grammatical and syntactical information in human text with dense vectors in a low dimension. Word2Vec has high computational cost due to the algorithm's inherent sequentiality, intensive memory accesses, and the large vocabularies it represents. While prior studies have investigated technologies to explore parallelism and improve memory system performance, they struggle to effectively gain throughput on powerful GPUs. We identify memory data access and latency as the primary bottleneck in prior works on GPUs, which prevents highly optimized kernels from attaining the architecture's peak performance. We present a novel algorithm, FULL-W2V, which maximally exploits the opportunities for data reuse in the W2V algorithm and leverages GPU architecture and resources to reduce access to low memory levels and improve temporal locality. FULL-W2V is capable of reducing accesses to GPU global memory significantly, e.g., by more than 89\%, compared to prior state-of-the-art GPU implementations, resulting in significant performance improvement that scales across successive hardware generations. Our prototype implementation achieves 2.97X speedup when ported from Nvidia Pascal P100 to Volta V100 cards, and outperforms the state-of-the-art by 5.72X on V100 cards with the same embedding quality. In-depth analysis indicates that the reduction of memory accesses through register and shared memory caching and high-throughput shared memory reduction leads to a significantly improved arithmetic intensity. FULL-W2V can potentially benefit many applications in NLP and other domains.