We provide sufficient conditions for the existence of viscosity solutions of fractional semilinear elliptic PDEs of index $\alpha \in (1,2)$ with polynomial gradient nonlinearities on $d$-dimensional balls, $d\geq 2$. Our approach uses a tree-based probabilistic representation based on $\alpha$-stable branching processes, and allows us to take into account gradient nonlinearities not covered by deterministic finite difference methods so far. Numerical illustrations demonstrate the accuracy of the method in dimension $d=10$, solving a challenge encountered with the use of deterministic finite difference methods in high-dimensional settings.
L. Klebanov proved the following theorem. Let $\xi_1, \dots, \xi_n$ be independent random variables. Consider linear forms $L_1=a_1\xi_1+\cdots+a_n\xi_n,$ $L_2=b_1\xi_1+\cdots+b_n\xi_n,$ $L_3=c_1\xi_1+\cdots+c_n\xi_n,$ $L_4=d_1\xi_1+\cdots+d_n\xi_n,$ where the coefficients $a_j, b_j, c_j, d_j$ are real numbers. If the random vectors $(L_1,L_2)$ and $(L_3,L_4)$ are identically distributed, then all $\xi_i$ for which $a_id_j-b_ic_j\neq 0$ for all $j=\overline{1,n}$ are Gaussian random variables. The present article is devoted to an analog of the Klebanov theorem in the case when random variables take values in a locally compact Abelian group and the coefficients of the linear forms are integers.
For terminal value problems of fractional differential equations of order $\alpha \in (0,1)$ that use Caputo derivatives, shooting methods are a well developed and investigated approach. Based on recently established analytic properties of such problems, we develop a new technique to select the required initial values that solves such shooting problems quickly and accurately. Numerical experiments indicate that this new proportional secting technique converges very quickly and accurately to the solution. Run time measurements indicate a speedup factor of between 4 and 10 when compared to the standard bisection method.
By combining a logarithm transformation with a corrected Milstein-type method, the present article proposes an explicit, unconditional boundary and dynamics preserving scheme for the stochastic susceptible-infected-susceptible (SIS) epidemic model that takes value in (0,N). The scheme applied to the model is first proved to have a strong convergence rate of order one. Further, the dynamic behaviors are analyzed for the numerical approximations and it is shown that the scheme can unconditionally preserve both the domain and the dynamics of the model. More precisely, the proposed scheme gives numerical approximations living in the domain (0,N) and reproducing the extinction and persistence properties of the original model for any time discretization step-size h > 0, without any additional requirements on the model parameters. Numerical experiments are presented to verify our theoretical results.
The proper conflict-free chromatic number, $\chi_{pcf}(G)$, of a graph $G$ is the least $k$ such that $G$ has a proper $k$-coloring in which for each non-isolated vertex there is a color appearing exactly once among its neighbors. The proper odd chromatic number, $\chi_{o}(G)$, of $G$ is the least $k$ such that $G$ has a proper coloring in which for every non-isolated vertex there is a color appearing an odd number of times among its neighbors. We say that a graph class $\mathcal{G}$ is $\chi_{pcf}$-bounded ($\chi_{o}$-bounded) if there is a function $f$ such that $\chi_{pcf}(G) \leq f(\chi(G))$ ($\chi_{o}(G) \leq f(\chi(G))$) for every $G \in \mathcal{G}$. Caro et al. (2022) asked for classes that are linearly $\chi_{pcf}$-bounded ($\chi_{pcf}$-bounded), and as a starting point, they showed that every claw-free graph $G$ satisfies $\chi_{pcf}(G) \le 2\Delta(G)+1$, which implies $\chi_{pcf}(G) \le 4\chi(G)+1$. They also conjectured that any graph $G$ with $\Delta(G) \ge 3$ satisfies $\chi_{pcf}(G) \le \Delta(G)+1$. In this paper, we improve the bound for claw-free graphs to a nearly tight bound by showing that such a graph $G$ satisfies $\chi_{pcf}(G) \le \Delta(G)+6$, and even $\chi_{pcf}(G) \le \Delta(G)+4$ if it is a quasi-line graph. Moreover, we show that convex-round graphs and permutation graphs are linearly $\chi_{pcf}$-bounded. For these last two results, we prove a lemma that reduces the problem of deciding if a hereditary class is linearly $\chi_{pcf}$-bounded to deciding if the bipartite graphs in the class are $\chi_{pcf}$-bounded by an absolute constant. This lemma complements a theorem of Liu (2022) and motivates us to further study boundedness in bipartite graphs. So among other results, we show that convex bipartite graphs are not $\chi_{o}$-bounded, and a class of bipartite circle graphs that is linearly $\chi_{o}$-bounded but not $\chi_{pcf}$-bounded.
This work puts forth low-complexity Riemannian subspace descent algorithms for the minimization of functions over the symmetric positive definite (SPD) manifold. Different from the existing Riemannian gradient descent variants, the proposed approach utilizes carefully chosen subspaces that allow the update to be written as a product of the Cholesky factor of the iterate and a sparse matrix. The resulting updates avoid the costly matrix operations like matrix exponentiation and dense matrix multiplication, which are generally required in almost all other Riemannian optimization algorithms on SPD manifold. We further identify a broad class of functions, arising in diverse applications, such as kernel matrix learning, covariance estimation of Gaussian distributions, maximum likelihood parameter estimation of elliptically contoured distributions, and parameter estimation in Gaussian mixture model problems, over which the Riemannian gradients can be calculated efficiently. The proposed uni-directional and multi-directional Riemannian subspace descent variants incur per-iteration complexities of $\mathcal{O}(n)$ and $\mathcal{O}(n^2)$ respectively, as compared to the $\mathcal{O}(n^3)$ or higher complexity incurred by all existing Riemannian gradient descent variants. The superior runtime and low per-iteration complexity of the proposed algorithms is also demonstrated via numerical tests on large-scale covariance estimation problems.
The multivariate inverse hypergeometric (MIH) distribution is an extension of the negative multinomial (NM) model that accounts for sampling without replacement in a finite population. Even though most studies on longitudinal count data with a specific number of `failures' occur in a finite setting, the NM model is typically chosen over the more accurate MIH model. This raises the question: How much information is lost when inferring with the approximate NM model instead of the true MIH model? The loss is quantified by a measure called deficiency in statistics. In this paper, asymptotic bounds for the deficiencies between MIH and NM experiments are derived, as well as between MIH and the corresponding multivariate normal experiments with the same mean-covariance structure. The findings are supported by a local approximation for the log-ratio of the MIH and NM probability mass functions, and by Hellinger distance bounds.
Let $X$ be a real-valued random variable with distribution function $F$. Set $X_1,\dots, X_m$ to be independent copies of $X$ and let $F_m$ be the corresponding empirical distribution function. We show that there are absolute constants $c_0$ and $c_1$ such that if $\Delta \geq c_0\frac{\log\log m}{m}$, then with probability at least $1-2\exp(-c_1\Delta m)$, for every $t\in\mathbb{R}$ that satisfies $F(t)\in[\Delta,1-\Delta]$, \[ |F_m(t) - F(t) | \leq \sqrt{\Delta \min\{F(t),1-F(t)\} } .\] Moreover, this estimate is optimal up to the multiplicative constants $c_0$ and $c_1$.
A new information theoretic condition is presented for reconstructing a discrete random variable $X$ based on the knowledge of a set of discrete functions of $X$. The reconstruction condition is derived from Shannon's 1953 lattice theory with two entropic metrics of Shannon and Rajski. Because such a theoretical material is relatively unknown and appears quite dispersed in different references, we first provide a synthetic description (with complete proofs) of its concepts, such as total, common and complementary informations. Definitions and properties of the two entropic metrics are also fully detailed and shown compatible with the lattice structure. A new geometric interpretation of such a lattice structure is then investigated that leads to a necessary (and sometimes sufficient) condition for reconstructing the discrete random variable $X$ given a set $\{ X_1,\ldots,X_{n} \}$ of elements in the lattice generated by $X$. Finally, this condition is illustrated in five specific examples of perfect reconstruction problems: reconstruction of a symmetric random variable from the knowledge of its sign and absolute value, reconstruction of a word from a set of linear combinations, reconstruction of an integer from its prime signature (fundamental theorem of arithmetic) and from its remainders modulo a set of coprime integers (Chinese remainder theorem), and reconstruction of the sorting permutation of a list from a minimal set of pairwise comparisons.
We study the approximation properties of complex-valued polynomial Trefftz spaces for the $(d+1)$-dimensional linear time-dependent Schr\"odinger equation. More precisely, we prove that for the space-time Trefftz discontinuous Galerkin variational formulation proposed by G\'omez, Moiola (SIAM. J. Num. Anal. 60(2): 688-714, 2022), the same $h$-convergence rates as for polynomials of degree $p$ in $(d + 1)$ variables can be obtained in a mesh-dependent norm by using a space of Trefftz polynomials of anisotropic degree. For such a space, the dimension is equal to that of the space of polynomials of degree $2p$ in $d$ variables, and bases are easily constructed.
The main computational cost per iteration of adaptive cubic regularization methods for solving large-scale nonconvex problems is the computation of the step $s_k$, which requires an approximate minimizer of the cubic model. We propose a new approach in which this minimizer is sought in a low dimensional subspace that, in contrast to classical approaches, is reused for a number of iterations. A regularized Newton step to correct $s_k$ is also incorporated whenever needed. We show that our method increases efficiency while preserving the worst-case complexity of classical cubic regularized methods. We also explore the use of rational Krylov subspaces for the subspace minimization, to overcome some of the issues encountered when using polynomial Krylov subspaces. We provide several experimental results illustrating the gains of the new approach when compared to classic implementations.