亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Emotion recognition in conversation (ERC) is a task which predicts the emotion of an utterance in the context of a conversation. It tightly depends on dialogue context, speaker identity information, multiparty dialogue scenario and so on. However, the state-of-the-art method (instructERC) solely identifying speaker, and ignores commonsense knowledge(i.e., reaction of the listeners and intention of the speaker, etc.) behind speakers during a conversation, which can deeply mine speaker information. To this end, we propose a novel joint large language models with commonsense knowledge framework for emotion recognition in conversation, namely CKERC.We design prompts to generate interlocutors' commonsense based on historical utterances with large language model. And we use the interlocutor commonsense identification task for LLM pre-training to fine-tune speaker implicit clues information.By solving above challenge, our method achieve state-of-the-art.We extensive experiment on three widely-used datasets, i.e., IEMOCAP, MELD, EmoryNLP, demonstrate our method superiority. Also, we conduct in-depth analysis and further demonstrate the effectiveness of commonsense knowledge in ERC task in large language model.

相關內容

Emerging scholarship suggests that the EU legal concept of direct discrimination - where a person is given different treatment on grounds of a protected characteristic - may apply to various algorithmic decision-making contexts. This has important implications: unlike indirect discrimination, there is generally no 'objective justification' stage in the direct discrimination framework, which means that the deployment of directly discriminatory algorithms will usually be unlawful per se. In this paper, we focus on the most likely candidate for direct discrimination in the algorithmic context, termed inherent direct discrimination, where a proxy is inextricably linked to a protected characteristic. We draw on computer science literature to suggest that, in the algorithmic context, 'treatment on the grounds of' needs to be understood in terms of two steps: proxy capacity and proxy use. Only where both elements can be made out can direct discrimination be said to be `on grounds of' a protected characteristic. We analyse the legal conditions of our proposed proxy capacity and proxy use tests. Based on this analysis, we discuss technical approaches and metrics that could be developed or applied to identify inherent direct discrimination in algorithmic decision-making.

The utilization of synthetic data for fingerprint recognition has garnered increased attention due to its potential to alleviate privacy concerns surrounding sensitive biometric data. However, current methods for generating fingerprints have limitations in creating impressions of the same finger with useful intra-class variations. To tackle this challenge, we present GenPrint, a framework to produce fingerprint images of various types while maintaining identity and offering humanly understandable control over different appearance factors such as fingerprint class, acquisition type, sensor device, and quality level. Unlike previous fingerprint generation approaches, GenPrint is not confined to replicating style characteristics from the training dataset alone: it enables the generation of novel styles from unseen devices without requiring additional fine-tuning. To accomplish these objectives, we developed GenPrint using latent diffusion models with multimodal conditions (text and image) for consistent generation of style and identity. Our experiments leverage a variety of publicly available datasets for training and evaluation. Results demonstrate the benefits of GenPrint in terms of identity preservation, explainable control, and universality of generated images. Importantly, the GenPrint-generated images yield comparable or even superior accuracy to models trained solely on real data and further enhances performance when augmenting the diversity of existing real fingerprint datasets.

Processing-using-DRAM (PuD) is an emerging paradigm that leverages the analog operational properties of DRAM circuitry to enable massively parallel in-DRAM computation. PuD has the potential to reduce or eliminate costly data movement between processing elements and main memory. Prior works experimentally demonstrate three-input MAJ (MAJ3) and two-input AND and OR operations in commercial off-the-shelf (COTS) DRAM chips. Yet, demonstrations on COTS DRAM chips do not provide a functionally complete set of operations. We experimentally demonstrate that COTS DRAM chips are capable of performing 1) functionally-complete Boolean operations: NOT, NAND, and NOR and 2) many-input (i.e., more than two-input) AND and OR operations. We present an extensive characterization of new bulk bitwise operations in 256 off-the-shelf modern DDR4 DRAM chips. We evaluate the reliability of these operations using a metric called success rate: the fraction of correctly performed bitwise operations. Among our 19 new observations, we highlight four major results. First, we can perform the NOT operation on COTS DRAM chips with a 98.37% success rate on average. Second, we can perform up to 16-input NAND, NOR, AND, and OR operations on COTS DRAM chips with high reliability (e.g., 16-input NAND, NOR, AND, and OR with an average success rate of 94.94%, 95.87%, 94.94%, and 95.85%, respectively). Third, data pattern only slightly affects bitwise operations. Our results show that executing NAND, NOR, AND, and OR operations with random data patterns decreases the success rate compared to all logic-1/logic-0 patterns by 1.39%, 1.97%, 1.43%, and 1.98%, respectively. Fourth, bitwise operations are highly resilient to temperature changes, with small success rate fluctuations of at most 1.66% when the temperature is increased from 50C to 95C. We open-source our infrastructure at //github.com/CMU-SAFARI/FCDRAM

Object detection is a mature problem in autonomous driving with pedestrian detection being one of the first deployed algorithms. It has been comprehensively studied in the literature. However, object detection is relatively less explored for fisheye cameras used for surround-view near field sensing. The standard bounding box representation fails in fisheye cameras due to heavy radial distortion, particularly in the periphery. To mitigate this, we explore extending the standard object detection output representation of bounding box. We design rotated bounding boxes, ellipse, generic polygon as polar arc/angle representations and define an instance segmentation mIOU metric to analyze these representations. The proposed model FisheyeDetNet with polygon outperforms others and achieves a mAP score of 49.5 % on Valeo fisheye surround-view dataset for automated driving applications. This dataset has 60K images captured from 4 surround-view cameras across Europe, North America and Asia. To the best of our knowledge, this is the first detailed study on object detection on fisheye cameras for autonomous driving scenarios.

Centralized Training with Decentralized Execution (CTDE) has emerged as a widely adopted paradigm in multi-agent reinforcement learning, emphasizing the utilization of global information for learning an enhanced joint $Q$-function or centralized critic. In contrast, our investigation delves into harnessing global information to directly enhance individual $Q$-functions or individual actors. Notably, we discover that applying identical global information universally across all agents proves insufficient for optimal performance. Consequently, we advocate for the customization of global information tailored to each agent, creating agent-personalized global information to bolster overall performance. Furthermore, we introduce a novel paradigm named Personalized Training with Distilled Execution (PTDE), wherein agent-personalized global information is distilled into the agent's local information. This distilled information is then utilized during decentralized execution, resulting in minimal performance degradation. PTDE can be seamlessly integrated with state-of-the-art algorithms, leading to notable performance enhancements across diverse benchmarks, including the SMAC benchmark, Google Research Football (GRF) benchmark, and Learning to Rank (LTR) task.

To comprehensively gauge the capacity of current models for complex reasoning, it is crucial to assess their step-by-step reasoning in a scalable manner. Established reference-based evaluation metrics rely on human-annotated reasoning chains as references to assess the model-derived chains. However, such "gold-standard" human-written reasoning chains may not be unique and their acquisition is often labor-intensive. Existing reference-free reasoning evaluation metrics, while eliminating the need for human-crafted reasoning chains as references, often require fine-tuning with human-derived chains before evaluation, complicating the process and questioning their adaptability to other datasets. To address these challenges, we harness GPT-4 to automatically evaluate reasoning chain quality, thereby removing the dependency on human-written reasoning chains for both model fine-tuning and evaluative purposes. Leveraging the Socratic method, we develop SocREval ({\bf Soc}ratic Method-Inspired {\bf R}easoning {\bf Eval}uation), a novel approach for prompt design in reference-free reasoning evaluation. Empirical results from four human annotated datasets reveal that SocREval significantly improves GPT-4's performance, surpassing existing reference-free and reference-based reasoning evaluation metrics. Beyond its demonstrated efficacy, SocREval, proves to be both cost-efficient and robust to prompt writing and example selection, as substantiated by our in-depth analysis.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

北京阿比特科技有限公司