亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Dynamic Mode Decomposition (DMD) is a popular data-driven analysis technique used to decompose complex, nonlinear systems into a set of modes, revealing underlying patterns and dynamics through spectral analysis. This review presents a comprehensive and pedagogical examination of DMD, emphasizing the role of Koopman operators in transforming complex nonlinear dynamics into a linear framework. A distinctive feature of this review is its focus on the relationship between DMD and the spectral properties of Koopman operators, with particular emphasis on the theory and practice of DMD algorithms for spectral computations. We explore the diverse "multiverse" of DMD methods, categorized into three main areas: linear regression-based methods, Galerkin approximations, and structure-preserving techniques. Each category is studied for its unique contributions and challenges, providing a detailed overview of significant algorithms and their applications as outlined in Table 1. We include a MATLAB package with examples and applications to enhance the practical understanding of these methods. This review serves as both a practical guide and a theoretical reference for various DMD methods, accessible to both experts and newcomers, and enabling readers to delve into their areas of interest in the expansive field of DMD.

相關內容

We study the Gaussian statistical models whose log-likelihood function has a unique complex critical point, i.e., has maximum likelihood degree one. We exploit the connection developed by Amendola et. al. between the models having maximum likelihood degree one and homaloidal polynomials. We study the spanning tree generating function of a graph and show this polynomial is homaloidal when the graph is chordal. When the graph is a cycle on $n$ vertices, $n \geq 4$, we prove the polynomial is not homaloidal, and show that the maximum likelihood degree of the resulting model is the $n$th Eulerian number. These results support our conjecture that the spanning tree generating function is a homaloidal polynomial if and only if the graph is chordal. We also provide an algebraic formulation for the defining equations of these models. Using existing results, we provide a computational study on constructing new families of homaloidal polynomials. In the end, we analyze the symmetric determinantal representation of such polynomials and provide an upper bound on the size of the matrices involved.

In psycholinguistics, the creation of controlled materials is crucial to ensure that research outcomes are solely attributed to the intended manipulations and not influenced by extraneous factors. To achieve this, psycholinguists typically pretest linguistic materials, where a common pretest is to solicit plausibility judgments from human evaluators on specific sentences. In this work, we investigate whether Language Models (LMs) can be used to generate these plausibility judgements. We investigate a wide range of LMs across multiple linguistic structures and evaluate whether their plausibility judgements correlate with human judgements. We find that GPT-4 plausibility judgements highly correlate with human judgements across the structures we examine, whereas other LMs correlate well with humans on commonly used syntactic structures. We then test whether this correlation implies that LMs can be used instead of humans for pretesting. We find that when coarse-grained plausibility judgements are needed, this works well, but when fine-grained judgements are necessary, even GPT-4 does not provide satisfactory discriminative power.

Learning to Rank (LTR) is one of the most widely used machine learning applications. It is a key component in platforms with profound societal impacts, including job search, healthcare information retrieval, and social media content feeds. Conventional LTR models have been shown to produce biases results, stimulating a discourse on how to address the disparities introduced by ranking systems that solely prioritize user relevance. However, while several models of fair learning to rank have been proposed, they suffer from deficiencies either in accuracy or efficiency, thus limiting their applicability to real-world ranking platforms. This paper shows how efficiently-solvable fair ranking models, based on the optimization of Ordered Weighted Average (OWA) functions, can be integrated into the training loop of an LTR model to achieve favorable balances between fairness, user utility, and runtime efficiency. In particular, this paper is the first to show how to backpropagate through constrained optimizations of OWA objectives, enabling their use in integrated prediction and decision models.

Text analysis is an interesting research area in data science and has various applications, such as in artificial intelligence, biomedical research, and engineering. We review popular methods for text analysis, ranging from topic modeling to the recent neural language models. In particular, we review Topic-SCORE, a statistical approach to topic modeling, and discuss how to use it to analyze MADStat - a dataset on statistical publications that we collected and cleaned. The application of Topic-SCORE and other methods on MADStat leads to interesting findings. For example, $11$ representative topics in statistics are identified. For each journal, the evolution of topic weights over time can be visualized, and these results are used to analyze the trends in statistical research. In particular, we propose a new statistical model for ranking the citation impacts of $11$ topics, and we also build a cross-topic citation graph to illustrate how research results on different topics spread to one another. The results on MADStat provide a data-driven picture of the statistical research in $1975$--$2015$, from a text analysis perspective.

Large Language Models (LLMs) have a natural role in answering complex queries about data streams, but the high computational cost of LLM inference makes them infeasible in many such tasks. We propose online cascade learning, the first approach to addressing this challenge. The objective here is to learn a "cascade" of models, starting with lower-capacity models (such as logistic regressors) and ending with a powerful LLM, along with a deferral policy that determines the model that is used on a given input. We formulate the task of learning cascades online as an imitation-learning problem and give a no-regret algorithm for the problem. Experimental results across four benchmarks show that our method parallels LLMs in accuracy while cutting down inference costs by as much as 90%, underscoring its efficacy and adaptability in stream processing.

Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.

Self-supervised learning, dubbed the dark matter of intelligence, is a promising path to advance machine learning. Yet, much like cooking, training SSL methods is a delicate art with a high barrier to entry. While many components are familiar, successfully training a SSL method involves a dizzying set of choices from the pretext tasks to training hyper-parameters. Our goal is to lower the barrier to entry into SSL research by laying the foundations and latest SSL recipes in the style of a cookbook. We hope to empower the curious researcher to navigate the terrain of methods, understand the role of the various knobs, and gain the know-how required to explore how delicious SSL can be.

Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful deep learning models, driving new algorithmic and modeling advances. On the other hand, recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning. In this survey paper, we review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade. We also evaluate existing benchmarks and methods, and discuss future research directions in this domain.

Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.

Aspect based sentiment analysis (ABSA) can provide more detailed information than general sentiment analysis, because it aims to predict the sentiment polarities of the given aspects or entities in text. We summarize previous approaches into two subtasks: aspect-category sentiment analysis (ACSA) and aspect-term sentiment analysis (ATSA). Most previous approaches employ long short-term memory and attention mechanisms to predict the sentiment polarity of the concerned targets, which are often complicated and need more training time. We propose a model based on convolutional neural networks and gating mechanisms, which is more accurate and efficient. First, the novel Gated Tanh-ReLU Units can selectively output the sentiment features according to the given aspect or entity. The architecture is much simpler than attention layer used in the existing models. Second, the computations of our model could be easily parallelized during training, because convolutional layers do not have time dependency as in LSTM layers, and gating units also work independently. The experiments on SemEval datasets demonstrate the efficiency and effectiveness of our models.

北京阿比特科技有限公司