Word embedding, a high-dimensional (HD) numerical representation of words generated by machine learning models, has been used for different natural language processing tasks, e.g., translation between two languages. Recently, there has been an increasing trend of transforming the HD embeddings into a latent space (e.g., via autoencoders) for further tasks, exploiting various merits the latent representations could bring. To preserve the embeddings' quality, these works often map the embeddings into an even higher-dimensional latent space, making the already complicated embeddings even less interpretable and consuming more storage space. In this work, we borrow the idea of $\beta$VAE to regularize the HD latent space. Our regularization implicitly condenses information from the HD latent space into a much lower-dimensional space, thus compressing the embeddings. We also show that each dimension of our regularized latent space is more semantically salient, and validate our assertion by interactively probing the encoding-level of user-proposed semantics in the dimensions. To the end, we design a visual analytics system to monitor the regularization process, explore the HD latent space, and interpret latent dimensions' semantics. We validate the effectiveness of our embedding regularization and interpretation approach through both quantitative and qualitative evaluations.
We utilize extreme learning machines for the prediction of partial differential equations (PDEs). Our method splits the state space into multiple windows that are predicted individually using a single model. Despite requiring only few data points (in some cases, our method can learn from a single full-state snapshot), it still achieves high accuracy and can predict the flow of PDEs over long time horizons. Moreover, we show how additional symmetries can be exploited to increase sample efficiency and to enforce equivariance.
This paper aims to analyze the stochastic performance of a multiple input multiple output (MIMO) integrated sensing and communication (ISAC) system in a downlink scenario, where a base station (BS) transmits a dual-functional radar-communication (DFRC) signal matrix, serving the purpose of transmitting communication data to the user while simultaneously sensing the angular location of a target. The channel between the BS and the user is modeled as a random channel with Rayleigh fading distribution, and the azimuth angle of the target is assumed to follow a uniform distribution. Due to the randomness inherent in the network, the challenge is to consider suitable performance metrics for this randomness. To address this issue, for users, we employ the user's rate outage probability (OP) and ergodic rate, while for target, we propose using the OP of the Cram\'er-Rao lower bound (CRLB) for the angle of arrival and the ergodic CRLB. We have obtained the expressions of these metrics for scenarios where the BS employs two different beamforming methods. Our approach to deriving these metrics involves computing the probability density function (PDF) of the signal-to-noise ratio for users and the CRLB for the target. We have demonstrated that the central limit theorem provides a viable approach for deriving these PDFs. In our numerical results, we demonstrate the trade-off between sensing and communication (S \& C) by characterizing the region of S \& C metrics and by obtaining the Pareto optimal boundary points, confirmed with simulations.
Self-Supervised Learning (SSL) has proven to be useful in various speech tasks. However, these methods are generally very demanding in terms of data, memory, and computational resources. BERT-based Speech pre-Training with Random-projection Quantizer (BEST-RQ), is an SSL method that has shown great performance on Automatic Speech Recognition (ASR) while being simpler than other SSL methods, such as wav2vec 2.0. Despite BEST-RQ's great performance, details are lacking in the original paper, such as the amount of GPU/TPU hours used in pre-training, and there is no official easy-to-use open-source implementation. Furthermore, BEST-RQ has not been evaluated on other downstream tasks aside from ASR and speech translation. In this work, we describe a re-implementation of a Random-projection quantizer and perform a preliminary study with a comparison to wav2vec 2.0 on four downstream tasks. We discuss the details and differences of our implementation. We show that a random projection quantizer can achieve similar downstream performance as wav2vec 2.0 while decreasing training time by over a factor of two.
While recommender systems with multi-modal item representations (image, audio, and text), have been widely explored, learning recommendations from multi-modal user interactions (e.g., clicks and speech) remains an open problem. We study the case of multi-modal user interactions in a setting where users engage with a service provider through multiple channels (website and call center). In such cases, incomplete modalities naturally occur, since not all users interact through all the available channels. To address these challenges, we publish a real-world dataset that allows progress in this under-researched area. We further present and benchmark various methods for leveraging multi-modal user interactions for item recommendations, and propose a novel approach that specifically deals with missing modalities by mapping user interactions to a common feature space. Our analysis reveals important interactions between the different modalities and that a frequently occurring modality can enhance learning from a less frequent one.
Effectively handling instructions with extremely long context remains a challenge for Large Language Models (LLMs), typically necessitating high-quality long data and substantial computational resources. This paper introduces Step-Skipping Alignment (SkipAlign), a new technique designed to enhance the long-context capabilities of LLMs in the phase of alignment without the need for additional efforts beyond training with original data length. SkipAlign is developed on the premise that long-range dependencies are fundamental to enhancing an LLM's capacity of long context. Departing from merely expanding the length of input samples, SkipAlign synthesizes long-range dependencies from the aspect of positions indices. This is achieved by the strategic insertion of skipped positions within instruction-following samples, which utilizes the semantic structure of the data to effectively expand the context. Through extensive experiments on base models with a variety of context window sizes, SkipAlign demonstrates its effectiveness across a spectrum of long-context tasks. Particularly noteworthy is that with a careful selection of the base model and alignment datasets, SkipAlign with only 6B parameters achieves it's best performance and comparable with strong baselines like GPT-3.5-Turbo-16K on LongBench.
We build a computational model of how humans actively infer hidden rules by doing experiments. The basic principles behind the model is that, even if the rule is deterministic, the learner considers a broader space of fuzzy probabilistic rules, which it represents in natural language, and updates its hypotheses online after each experiment according to approximately Bayesian principles. In the same framework we also model experiment design according to information-theoretic criteria. We find that the combination of these three principles -- explicit hypotheses, probabilistic rules, and online updates -- can explain human performance on a Zendo-style task, and that removing any of these components leaves the model unable to account for the data.
The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.
Deploying large language models (LLMs) is challenging because they are memory inefficient and compute-intensive for practical applications. In reaction, researchers train smaller task-specific models by either finetuning with human labels or distilling using LLM-generated labels. However, finetuning and distillation require large amounts of training data to achieve comparable performance to LLMs. We introduce Distilling step-by-step, a new mechanism that (a) trains smaller models that outperform LLMs, and (b) achieves so by leveraging less training data needed by finetuning or distillation. Our method extracts LLM rationales as additional supervision for small models within a multi-task training framework. We present three findings across 4 NLP benchmarks: First, compared to both finetuning and distillation, our mechanism achieves better performance with much fewer labeled/unlabeled training examples. Second, compared to LLMs, we achieve better performance using substantially smaller model sizes. Third, we reduce both the model size and the amount of data required to outperform LLMs; our 770M T5 model outperforms the 540B PaLM model using only 80% of available data on a benchmark task.
Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.