亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Video action recognition (VAR) plays crucial roles in various domains such as surveillance, healthcare, and industrial automation, making it highly significant for the society. Consequently, it has long been a research spot in the computer vision field. As artificial neural networks (ANNs) are flourishing, convolution neural networks (CNNs), including 2D-CNNs and 3D-CNNs, as well as variants of the vision transformer (ViT), have shown impressive performance on VAR. However, they usually demand huge computational cost due to the large data volume and heavy information redundancy introduced by the temporal dimension. To address this challenge, some researchers have turned to brain-inspired spiking neural networks (SNNs), such as recurrent SNNs and ANN-converted SNNs, leveraging their inherent temporal dynamics and energy efficiency. Yet, current SNNs for VAR also encounter limitations, such as nontrivial input preprocessing, intricate network construction/training, and the need for repetitive processing of the same video clip, hindering their practical deployment. In this study, we innovatively propose the directly trained SVFormer (Spiking Video transFormer) for VAR. SVFormer integrates local feature extraction, global self-attention, and the intrinsic dynamics, sparsity, and spike-driven nature of SNNs, to efficiently and effectively extract spatio-temporal features. We evaluate SVFormer on two RGB datasets (UCF101, NTU-RGBD60) and one neuromorphic dataset (DVS128-Gesture), demonstrating comparable performance to the mainstream models in a more efficient way. Notably, SVFormer achieves a top-1 accuracy of 84.03% with ultra-low power consumption (21 mJ/video) on UCF101, which is state-of-the-art among directly trained deep SNNs, showcasing significant advantages over prior models.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會(hui)議。 Publisher:IFIP。 SIT:

Medical imaging segmentation plays a significant role in the automatic recognition and analysis of lesions. State-of-the-art methods, particularly those utilizing transformers, have been prominently adopted in 3D semantic segmentation due to their superior performance in scalability and generalizability. However, plain vision transformers encounter challenges due to their neglect of local features and their high computational complexity. To address these challenges, we introduce three key contributions: Firstly, we proposed SegStitch, an innovative architecture that integrates transformers with denoising ODE blocks. Instead of taking whole 3D volumes as inputs, we adapt axial patches and customize patch-wise queries to ensure semantic consistency. Additionally, we conducted extensive experiments on the BTCV and ACDC datasets, achieving improvements up to 11.48% and 6.71% respectively in mDSC, compared to state-of-the-art methods. Lastly, our proposed method demonstrates outstanding efficiency, reducing the number of parameters by 36.7% and the number of FLOPS by 10.7% compared to UNETR. This advancement holds promising potential for adapting our method to real-world clinical practice. The code will be available at //github.com/goblin327/SegStitch

Deep neural networks (DNNs) are vulnerable to small adversarial perturbations of the inputs, posing a significant challenge to their reliability and robustness. Empirical methods such as adversarial training can defend against particular attacks but remain vulnerable to more powerful attacks. Alternatively, Lipschitz networks provide certified robustness to unseen perturbations but lack sufficient expressive power. To harness the advantages of both approaches, we design a novel two-step Optimal Transport induced Adversarial Defense (OTAD) model that can fit the training data accurately while preserving the local Lipschitz continuity. First, we train a DNN with a regularizer derived from optimal transport theory, yielding a discrete optimal transport map linking data to its features. By leveraging the map's inherent regularity, we interpolate the map by solving the convex integration problem (CIP) to guarantee the local Lipschitz property. OTAD is extensible to diverse architectures of ResNet and Transformer, making it suitable for complex data. For efficient computation, the CIP can be solved through training neural networks. OTAD opens a novel avenue for developing reliable and secure deep learning systems through the regularity of optimal transport maps. Empirical results demonstrate that OTAD can outperform other robust models on diverse datasets.

Instruction tuning in multimodal large language models (MLLMs) aims to smoothly integrate a backbone LLM with a pre-trained feature encoder for downstream tasks. The major challenge is how to efficiently find the synergy through cooperative learning where LLMs adapt their reasoning abilities in downstream tasks while feature encoders adjust their encoding to provide more relevant modal information. In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives, where we find unbalanced learning between the two components, i.e., the feature encoder and the LLM, can cause diminishing learning gradients that slow the model convergence and often lead to sub-optimal results due to insufficient learning. Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance, based on which we further design a dynamic learning scheduler that better coordinates the learning. In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs considering the learning state of each model component, which potentially prevents each component from gradient diminishing and enables a more accurate estimation of the learning balance coefficient. We conduct experiments with multiple LLM backbones and feature encoders, where our techniques are model-agnostic and can be generically integrated with various MLLM backbones. Experiment results on multiple downstream tasks and modalities in vision and audio, demonstrate the proposed method's better efficiency and effectiveness in MLLM instruction tuning.

Histological artifacts pose challenges for both pathologists and Computer-Aided Diagnosis (CAD) systems, leading to errors in analysis. Current approaches for histological artifact restoration, based on Generative Adversarial Networks (GANs) and pixel-level Diffusion Models, suffer from performance limitations and computational inefficiencies. In this paper, we propose a novel framework, LatentArtiFusion, which leverages the latent diffusion model (LDM) to reconstruct histological artifacts with high performance and computational efficiency. Unlike traditional pixel-level diffusion frameworks, LatentArtiFusion executes the restoration process in a lower-dimensional latent space, significantly improving computational efficiency. Moreover, we introduce a novel regional artifact reconstruction algorithm in latent space to prevent mistransfer in non-artifact regions, distinguishing our approach from GAN-based methods. Through extensive experiments on real-world histology datasets, LatentArtiFusion demonstrates remarkable speed, outperforming state-of-the-art pixel-level diffusion frameworks by more than 30X. It also consistently surpasses GAN-based methods by at least 5% across multiple evaluation metrics. Furthermore, we evaluate the effectiveness of our proposed framework in downstream tissue classification tasks, showcasing its practical utility. Code is available at //github.com/bugs-creator/LatentArtiFusion.

Virtual Reality (VR) headsets have become increasingly popular for remote collaboration, but video conferencing poses challenges when the user's face is covered by the headset. Existing solutions have limitations in terms of accessibility. In this paper, we propose HeadsetOff, a novel system that achieves photorealistic video conferencing on economical VR headsets by leveraging voice-driven face reconstruction. HeadsetOff consists of three main components: a multimodal attention-based predictor, a generator, and an adaptive controller. The predictor effectively predicts user future behavior based on different modalities. The generator employs voice input, head motion, and eye blink to animate the human face. The adaptive controller dynamically selects the appropriate generator model based on the trade-off between video quality and delay, aiming to maximize Quality of Experience while minimizing latency. Experimental results demonstrate the effectiveness of HeadsetOff in achieving high-quality, low-latency video conferencing on economical VR headsets.

Automatic group emotion recognition plays an important role in understanding complex human-human interaction. This paper introduces, Emolysis, a Python-based, standalone open-source group emotion analysis toolkit for use in different social situations upon getting consent from the users. Given any input video, Emolysis processes synchronized multimodal input and maps it to group level emotion, valence and arousal. Additionally, the toolkit supports major mobile and desktop platforms (Android, iOS, Windows). The Emolysis platform also comes with an intuitive graphical user interface that allows users to select different modalities and target persons for more fine-grained emotion analysis. Emolysis is freely available for academic research and encourages application developers to extend it to application specific environments on top of the existing system. We believe that the extension mechanism is quite straightforward. Our code models and interface are available at //github.com/ControlNet/emolysis.

Different from traditional video retrieval, sign language retrieval is more biased towards understanding the semantic information of human actions contained in video clips. Previous works typically only encode RGB videos to obtain high-level semantic features, resulting in local action details drowned in a large amount of visual information redundancy. Furthermore, existing RGB-based sign retrieval works suffer from the huge memory cost of dense visual data embedding in end-to-end training, and adopt offline RGB encoder instead, leading to suboptimal feature representation. To address these issues, we propose a novel sign language representation framework called Semantically Enhanced Dual-Stream Encoder (SEDS), which integrates Pose and RGB modalities to represent the local and global information of sign language videos. Specifically, the Pose encoder embeds the coordinates of keypoints corresponding to human joints, effectively capturing detailed action features. For better context-aware fusion of two video modalities, we propose a Cross Gloss Attention Fusion (CGAF) module to aggregate the adjacent clip features with similar semantic information from intra-modality and inter-modality. Moreover, a Pose-RGB Fine-grained Matching Objective is developed to enhance the aggregated fusion feature by contextual matching of fine-grained dual-stream features. Besides the offline RGB encoder, the whole framework only contains learnable lightweight networks, which can be trained end-to-end. Extensive experiments demonstrate that our framework significantly outperforms state-of-the-art methods on various datasets.

Time series classification stands as a pivotal and intricate challenge across various domains, including finance, healthcare, and industrial systems. In contemporary research, there has been a notable upsurge in exploring feature extraction through random sampling. Unlike deep convolutional networks, these methods sidestep elaborate training procedures, yet they often necessitate generating a surplus of features to comprehensively encapsulate time series nuances. Consequently, some features may lack relevance to labels or exhibit multi-collinearity with others. In this paper, we propose a novel hierarchical feature selection method aided by ANOVA variance analysis to address this challenge. Through meticulous experimentation, we demonstrate that our method substantially reduces features by over 94% while preserving accuracy -- a significant advancement in the field of time series analysis and feature selection.

The rapid evolution of digital sports media necessitates sophisticated information retrieval systems that can efficiently parse extensive multimodal datasets. This paper introduces SoccerRAG, an innovative framework designed to harness the power of Retrieval Augmented Generation (RAG) and Large Language Models (LLMs) to extract soccer-related information through natural language queries. By leveraging a multimodal dataset, SoccerRAG supports dynamic querying and automatic data validation, enhancing user interaction and accessibility to sports archives. Our evaluations indicate that SoccerRAG effectively handles complex queries, offering significant improvements over traditional retrieval systems in terms of accuracy and user engagement. The results underscore the potential of using RAG and LLMs in sports analytics, paving the way for future advancements in the accessibility and real-time processing of sports data.

Data plays a fundamental role in the training of Large Language Models (LLMs). Effective data management, particularly in the formulation of a well-suited training dataset, holds significance for enhancing model performance and improving training efficiency during pretraining and supervised fine-tuning phases. Despite the considerable importance of data management, the current research community still falls short in providing a systematic analysis of the rationale behind management strategy selection, its consequential effects, methodologies for evaluating curated datasets, and the ongoing pursuit of improved strategies. Consequently, the exploration of data management has attracted more and more attention among the research community. This survey provides a comprehensive overview of current research in data management within both the pretraining and supervised fine-tuning stages of LLMs, covering various noteworthy aspects of data management strategy design: data quantity, data quality, domain/task composition, etc. Looking toward the future, we extrapolate existing challenges and outline promising directions for development in this field. Therefore, this survey serves as a guiding resource for practitioners aspiring to construct powerful LLMs through effective data management practices. The collection of the latest papers is available at //github.com/ZigeW/data_management_LLM.

北京阿比特科技有限公司