亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

To navigate reliably in indoor environments, an industrial autonomous vehicle must know its position. However, current indoor vehicle positioning technologies either lack accuracy, usability or are too expensive. Thus, we propose a novel concept called local reference point assisted active radar positioning, which is able to overcome these drawbacks. It is based on distributing passive retroreflectors in the indoor environment such that each position of the vehicle can be identified by a unique reflection characteristic regarding the reflectors. To observe these characteristics, the autonomous vehicle is equipped with an active radar system. On one hand, this paper presents the basic idea and concept of our new approach towards indoor vehicle positioning and especially focuses on the crucial placement of the reflectors. On the other hand, it also provides a proof of concept by conducting a full system simulation including the placement of the local reference points, the radar-based distance estimation and the comparison of two different positioning methods. It successfully demonstrates the feasibility of our proposed approach.

相關內容

Due to its advantages in resource constraint scenarios, Split Federated Learning (SFL) is promising in AIoT systems. However, due to data heterogeneity and stragglers, SFL suffers from the challenges of low inference accuracy and low efficiency. To address these issues, this paper presents a novel SFL approach, named Sliding Split Federated Learning (S$^2$FL), which adopts an adaptive sliding model split strategy and a data balance-based training mechanism. By dynamically dispatching different model portions to AIoT devices according to their computing capability, S$^2$FL can alleviate the low training efficiency caused by stragglers. By combining features uploaded by devices with different data distributions to generate multiple larger batches with a uniform distribution for back-propagation, S$^2$FL can alleviate the performance degradation caused by data heterogeneity. Experimental results demonstrate that, compared to conventional SFL, S$^2$FL can achieve up to 16.5\% inference accuracy improvement and 3.54X training acceleration.

Data is one of the most critical elements in building a large language model. However, existing systems either fail to customize a corpus curation pipeline or neglect to leverage comprehensive corpus assessment for iterative optimization of the curation. To this end, we present a pretraining corpus curation and assessment platform called Oasis -- a one-stop system for data quality improvement and quantification with user-friendly interactive interfaces. Specifically, the interactive modular rule filter module can devise customized rules according to explicit feedback. The debiased neural filter module builds the quality classification dataset in a negative-centric manner to remove the undesired bias. The adaptive document deduplication module could execute large-scale deduplication with limited memory resources. These three parts constitute the customized data curation module. And in the holistic data assessment module, a corpus can be assessed in local and global views, with three evaluation means including human, GPT-4, and heuristic metrics. We exhibit a complete process to use Oasis for the curation and assessment of pretraining data. In addition, an 800GB bilingual corpus curated by Oasis is publicly released.

Speech is considered as a multi-modal process where hearing and vision are two fundamentals pillars. In fact, several studies have demonstrated that the robustness of Automatic Speech Recognition systems can be improved when audio and visual cues are combined to represent the nature of speech. In addition, Visual Speech Recognition, an open research problem whose purpose is to interpret speech by reading the lips of the speaker, has been a focus of interest in the last decades. Nevertheless, in order to estimate these systems in the currently Deep Learning era, large-scale databases are required. On the other hand, while most of these databases are dedicated to English, other languages lack sufficient resources. Thus, this paper presents a semi-automatically annotated audiovisual database to deal with unconstrained natural Spanish, providing 13 hours of data extracted from Spanish television. Furthermore, baseline results for both speaker-dependent and speaker-independent scenarios are reported using Hidden Markov Models, a traditional paradigm that has been widely used in the field of Speech Technologies.

For intelligent quadcopter UAVs, a robust and reliable autonomous planning system is crucial. Most current trajectory planning methods for UAVs are suitable for static environments but struggle to handle dynamic obstacles, which can pose challenges and even dangers to flight. To address this issue, this paper proposes a vision-based planning system that combines tracking and trajectory prediction of dynamic obstacles to achieve efficient and reliable autonomous flight. We use a lightweight object detection algorithm to identify dynamic obstacles and then use Kalman Filtering to track and estimate their motion states. During the planning phase, we not only consider static obstacles but also account for the potential movements of dynamic obstacles. For trajectory generation, we use a B-spline-based trajectory search algorithm, which is further optimized with various constraints to enhance safety and alignment with the UAV's motion characteristics. We conduct experiments in both simulation and real-world environments, and the results indicate that our approach can successfully detect and avoid obstacles in dynamic environments in real-time, offering greater reliability compared to existing approaches. Furthermore, with the advancements in Natural Language Processing (NLP) technology demonstrating exceptional zero-shot generalization capabilities, more user-friendly human-machine interactions have become feasible, and this study also explores the integration of autonomous planning systems with Large Language Models (LLMs).

Generating safe behaviors for autonomous systems is important as they continue to be deployed in the real world, especially around people. In this work, we focus on developing a novel safe controller for systems where there are multiple sources of uncertainty. We formulate a novel multimodal safe control method, called the Multimodal Safe Set Algorithm (MMSSA) for the case where the agent has uncertainty over which discrete mode the system is in, and each mode itself contains additional uncertainty. To our knowledge, this is the first energy-function-based safe control method applied to systems with multimodal uncertainty. We apply our controller to a simulated human-robot interaction where the robot is uncertain of the human's true intention and each potential intention has its own additional uncertainty associated with it, since the human is not a perfectly rational actor. We compare our proposed safe controller to existing safe control methods and find that it does not impede the system performance (i.e. efficiency) while also improving the safety of the system.

Artificial Intelligence (AI) systems such as autonomous vehicles, facial recognition, and speech recognition systems are increasingly integrated into our daily lives. However, despite their utility, these AI systems are vulnerable to a wide range of attacks such as adversarial, backdoor, data poisoning, membership inference, model inversion, and model stealing attacks. In particular, numerous attacks are designed to target a particular model or system, yet their effects can spread to additional targets, referred to as transferable attacks. Although considerable efforts have been directed toward developing transferable attacks, a holistic understanding of the advancements in transferable attacks remains elusive. In this paper, we comprehensively explore learning-based attacks from the perspective of transferability, particularly within the context of cyber-physical security. We delve into different domains -- the image, text, graph, audio, and video domains -- to highlight the ubiquitous and pervasive nature of transferable attacks. This paper categorizes and reviews the architecture of existing attacks from various viewpoints: data, process, model, and system. We further examine the implications of transferable attacks in practical scenarios such as autonomous driving, speech recognition, and large language models (LLMs). Additionally, we outline the potential research directions to encourage efforts in exploring the landscape of transferable attacks. This survey offers a holistic understanding of the prevailing transferable attacks and their impacts across different domains.

Illumination degradation image restoration (IDIR) techniques aim to improve the visibility of degraded images and mitigate the adverse effects of deteriorated illumination. Among these algorithms, diffusion model (DM)-based methods have shown promising performance but are often burdened by heavy computational demands and pixel misalignment issues when predicting the image-level distribution. To tackle these problems, we propose to leverage DM within a compact latent space to generate concise guidance priors and introduce a novel solution called Reti-Diff for the IDIR task. Reti-Diff comprises two key components: the Retinex-based latent DM (RLDM) and the Retinex-guided transformer (RGformer). To ensure detailed reconstruction and illumination correction, RLDM is empowered to acquire Retinex knowledge and extract reflectance and illumination priors. These priors are subsequently utilized by RGformer to guide the decomposition of image features into their respective reflectance and illumination components. Following this, RGformer further enhances and consolidates the decomposed features, resulting in the production of refined images with consistent content and robustness to handle complex degradation scenarios. Extensive experiments show that Reti-Diff outperforms existing methods on three IDIR tasks, as well as downstream applications. Code will be available at \url{//github.com/ChunmingHe/Reti-Diff}.

Simulators have irreplaceable importance for the research and development of autonomous driving. Besides saving resources, labor, and time, simulation is the only feasible way to reproduce many severe accident scenarios. Despite their widespread adoption across academia and industry, there is an absence in the evolutionary trajectory of simulators and critical discourse on their limitations. To bridge the gap in research, this paper conducts an in-depth review of simulators for autonomous driving. It delineates the three-decade development into three stages: specialized development period, gap period, and comprehensive development, from which it detects a trend of implementing comprehensive functionalities and open-source accessibility. Then it classifies the simulators by functions, identifying five categories: traffic flow simulator, vehicle dynamics simulator, scenario editor, sensory data generator, and driving strategy validator. Simulators that amalgamate diverse features are defined as comprehensive simulators. By investigating commercial and open-source simulators, this paper reveals that the critical issues faced by simulators primarily revolve around fidelity and efficiency concerns. This paper justifies that enhancing the realism of adverse weather simulation, automated map reconstruction, and interactive traffic participants will bolster credibility. Concurrently, headless simulation and multiple-speed simulation techniques will exploit the theoretic advantages. Moreover, this paper delves into potential solutions for the identified issues. It explores qualitative and quantitative evaluation metrics to assess the simulator's performance. This paper guides users to find suitable simulators efficiently and provides instructive suggestions for developers to improve simulator efficacy purposefully.

Owing to effective and flexible data acquisition, unmanned aerial vehicle (UAV) has recently become a hotspot across the fields of computer vision (CV) and remote sensing (RS). Inspired by recent success of deep learning (DL), many advanced object detection and tracking approaches have been widely applied to various UAV-related tasks, such as environmental monitoring, precision agriculture, traffic management. This paper provides a comprehensive survey on the research progress and prospects of DL-based UAV object detection and tracking methods. More specifically, we first outline the challenges, statistics of existing methods, and provide solutions from the perspectives of DL-based models in three research topics: object detection from the image, object detection from the video, and object tracking from the video. Open datasets related to UAV-dominated object detection and tracking are exhausted, and four benchmark datasets are employed for performance evaluation using some state-of-the-art methods. Finally, prospects and considerations for the future work are discussed and summarized. It is expected that this survey can facilitate those researchers who come from remote sensing field with an overview of DL-based UAV object detection and tracking methods, along with some thoughts on their further developments.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

北京阿比特科技有限公司