亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Understanding how information can efficiently spread in distributed systems under noisy communications is a fundamental question in both biological research and artificial system design. When agents are able to control whom they interact with, noise can often be mitigated through redundancy or other coding techniques, but it may have fundamentally different consequences on well-mixed systems. Specifically, Boczkowski et al. (2018) considered the noisy $\mathcal{PULL}(h)$ model, where each message can be viewed as any other message with probability $\delta$. The authors proved that in this model, the basic task of propagating a bit value from a single source to the whole population requires $\Omega(\frac{n\delta}{h(1-\delta|\Sigma|)^2})$ (parallel) rounds. The current work shows that the aforementioned lower bound is almost tight. In particular, when each agent observes all other agents in each round, which relates to scenarios where each agent senses the system's average tendency, information spreading can reliably be achieved in $\mathcal{O}(\log n)$ time, assuming constant noise. We present two simple and highly efficient protocols, thus suggesting their applicability to real-life scenarios. Notably, they also work in the presence of multiple conflicting sources and efficiently converge to their plurality opinion. The first protocol we present uses 1-bit messages but relies on a simultaneous wake-up assumption. By increasing the message size to 2 bits and removing the speedup in the information spreading time that may result from having multiple sources, we also present a simple and highly efficient self-stabilizing protocol that avoids the simultaneous wake-up requirement. Overall, our results demonstrate how, under stochastic communication, increasing the sample size can compensate for the lack of communication structure by linearly accelerating information spreading time.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · MoDELS · PMD · 機器人 · 傳感器 ·
2024 年 12 月 19 日

Time of Flight ToF cameras renowned for their ability to capture realtime 3D information have become indispensable for agile mobile robotics These cameras utilize light signals to accurately measure distances enabling robots to navigate complex environments with precision Innovative depth cameras characterized by their compact size and lightweight design such as the recently released PMD Flexx2 are particularly suited for mobile robots Capable of achieving high frame rates while capturing depth information this innovative sensor is suitable for tasks such as robot navigation and terrain mapping Operating on the ToF measurement principle the sensor offers multiple benefits over classic stereobased depth cameras However the depth images produced by the camera are subject to noise from multiple sources complicating their simulation This paper proposes an accurate quantification and modeling of the nonsystematic noise of the PMD Flexx2 We propose models for both axial and lateral noise across various camera modes assuming Gaussian distributions Axial noise modeled as a function of distance and incidence angle demonstrated a low average KullbackLeibler KL divergence of 0015 nats reflecting precise noise characterization Lateral noise deviating from a Gaussian distribution was modeled conservatively yielding a satisfactory KL divergence of 0868 nats These results validate our noise models crucial for accurately simulating sensor behavior in virtual environments and reducing the simtoreal gap in learningbased control approaches

Concurrent computation and communication (C3) is a pervasive paradigm in ML and other domains, making its performance optimization crucial. In this paper, we carefully characterize C3 in ML on GPUs, which are most widely deployed for ML training and inference. We observe that while C3 leads to performance uplifts, the uplifts are far lower than ideal speedups (serial computation and communication versus maximum of computation or communication; all times from isolated executions). C3 on average achieves only 21% of ideal speedup, this is due to known challenges of compute and memory interference between concurrent GPU kernels (that is, sharing of GPU's compute units, caches and HBM). To attain better performance for C3, first, we evaluate dual strategies of schedule prioritization and careful resource partitioning of compute units on GPUs to push performance attained with C3 (on average 42% of ideal speedup). We also provide heuristics that can guide a runtime while employing these strategies. To further enhance C3 performance, we propose to mitigate C3 interference by offloading communication tasks to the GPU's DMA engines. To this end, we build Concurrent Communication CoLlectives (ConCCL) proof-of-concepts that harness DMA engines for communication. We show how ConCCL considerably closes the gap between realized and ideal speedup for C3 (on average 72% of ideal speedup is realized, up to 1.67x speedup). Overall, our work makes a strong case for GPU DMA engine advancements to better support C3 on GPUs.

Understanding relations arising out of interactions among entities can be very difficult, and predicting them is even more challenging. This problem has many applications in various fields, such as financial networks and e-commerce. These relations can involve much more complexities than just involving more than two entities. One such scenario is evolving recursive relations between multiple entities, and so far, this is still an open problem. This work addresses the problem of forecasting higher-order interaction events that can be multi-relational and recursive. We pose the problem in the framework of representation learning of temporal hypergraphs that can capture complex relationships involving multiple entities. The proposed model, \textit{Relational Recursive Hyperedge Temporal Point Process} (RRHyperTPP) uses an encoder that learns a dynamic node representation based on the historical interaction patterns and then a hyperedge link prediction-based decoder to model the occurrence of interaction events. These learned representations are then used for downstream tasks involving forecasting the type and time of interactions. The main challenge in learning from hyperedge events is that the number of possible hyperedges grows exponentially with the number of nodes in the network. This will make the computation of negative log-likelihood of the temporal point process expensive, as the calculation of survival function requires a summation over all possible hyperedges. In our work, we develop a noise contrastive estimation method to learn the parameters of our model, and we have experimentally shown that our models perform better than previous state-of-the-art methods for interaction forecasting.

By generating new yet effective data, data augmentation has become a promising method to mitigate the data sparsity problem in sequential recommendation. Existing works focus on augmenting the original data but rarely explore the issue of imbalanced relevance and diversity for augmented data, leading to semantic drift problems or limited performance improvements. In this paper, we propose a novel Balanced data Augmentation Plugin for Sequential Recommendation (BASRec) to generate data that balance relevance and diversity. BASRec consists of two modules: Single-sequence Augmentation and Cross-sequence Augmentation. The former leverages the randomness of the heuristic operators to generate diverse sequences for a single user, after which the diverse and the original sequences are fused at the representation level to obtain relevance. Further, we devise a reweighting strategy to enable the model to learn the preferences based on the two properties adaptively. The Cross-sequence Augmentation performs nonlinear mixing between different sequence representations from two directions. It produces virtual sequence representations that are diverse enough but retain the vital semantics of the original sequences. These two modules enhance the model to discover fine-grained preferences knowledge from single-user and cross-user perspectives. Extensive experiments verify the effectiveness of BASRec. The average improvement is up to 72.0% on GRU4Rec, 33.8% on SASRec, and 68.5% on FMLP-Rec. We demonstrate that BASRec generates data with a better balance between relevance and diversity than existing methods. The source code is available at //github.com/KingGugu/BASRec.

Guided data visualization systems are highly useful for domain experts to highlight important trends in their large-scale and complex datasets. However, more work is needed to understand the impact of guidance on interpreting data visualizations as well as on the resulting use of visualizations when communicating insights. We conducted two user studies with domain experts and found that experts benefit from a guided coarse-to-fine structure when using data visualization systems, as this is the same structure in which they communicate findings.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.

Path-based relational reasoning over knowledge graphs has become increasingly popular due to a variety of downstream applications such as question answering in dialogue systems, fact prediction, and recommender systems. In recent years, reinforcement learning (RL) has provided solutions that are more interpretable and explainable than other deep learning models. However, these solutions still face several challenges, including large action space for the RL agent and accurate representation of entity neighborhood structure. We address these problems by introducing a type-enhanced RL agent that uses the local neighborhood information for efficient path-based reasoning over knowledge graphs. Our solution uses graph neural network (GNN) for encoding the neighborhood information and utilizes entity types to prune the action space. Experiments on real-world dataset show that our method outperforms state-of-the-art RL methods and discovers more novel paths during the training procedure.

We study how to generate captions that are not only accurate in describing an image but also discriminative across different images. The problem is both fundamental and interesting, as most machine-generated captions, despite phenomenal research progresses in the past several years, are expressed in a very monotonic and featureless format. While such captions are normally accurate, they often lack important characteristics in human languages - distinctiveness for each caption and diversity for different images. To address this problem, we propose a novel conditional generative adversarial network for generating diverse captions across images. Instead of estimating the quality of a caption solely on one image, the proposed comparative adversarial learning framework better assesses the quality of captions by comparing a set of captions within the image-caption joint space. By contrasting with human-written captions and image-mismatched captions, the caption generator effectively exploits the inherent characteristics of human languages, and generates more discriminative captions. We show that our proposed network is capable of producing accurate and diverse captions across images.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司