亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Generalized additive partial linear models (GAPLMs) are appealing for model interpretation and prediction. However, for GAPLMs, the covariates and the degree of smoothing in the nonparametric parts are often difficult to determine in practice. To address this model selection uncertainty issue, we develop a computationally feasible model averaging (MA) procedure. The model weights are data-driven and selected based on multifold cross-validation (CV) (instead of leave-one-out) for computational saving. When all the candidate models are misspecified, we show that the proposed MA estimator for GAPLMs is asymptotically optimal in the sense of achieving the lowest possible Kullback-Leibler loss. In the other scenario where the candidate model set contains at least one correct model, the weights chosen by the multifold CV are asymptotically concentrated on the correct models. As a by-product, we propose a variable importance measure to quantify the importances of the predictors in GAPLMs based on the MA weights. It is shown to be able to asymptotically identify the variables in the true model. Moreover, when the number of candidate models is very large, a model screening method is provided. Numerical experiments show the superiority of the proposed MA method over some existing model averaging and selection methods.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 專家之積 · MoDELS · 相似度 · 學習器 ·
2023 年 2 月 6 日

Several proposals have been put forward in recent years for improving out-of-distribution (OOD) performance through mitigating dataset biases. A popular workaround is to train a robust model by re-weighting training examples based on a secondary biased model. Here, the underlying assumption is that the biased model resorts to shortcut features. Hence, those training examples that are correctly predicted by the biased model are flagged as being biased and are down-weighted during the training of the main model. However, assessing the importance of an instance merely based on the predictions of the biased model may be too naive. It is possible that the prediction of the main model can be derived from another decision-making process that is distinct from the behavior of the biased model. To circumvent this, we introduce a fine-tuning strategy that incorporates the similarity between the main and biased model attribution scores in a Product of Experts (PoE) loss function to further improve OOD performance. With experiments conducted on natural language inference and fact verification benchmarks, we show that our method improves OOD results while maintaining in-distribution (ID) performance.

This work considers Gaussian process interpolation with a periodized version of the Mat{\'e}rn covariance function introduced by Stein (22, Section 6.7). Convergence rates are studied for the joint maximum likelihood estimation of the regularity and the amplitude parameters when the data is sampled according to the model. The mean integrated squared error is also analyzed with fixed and estimated parameters, showing that maximum likelihood estimation yields asymptotically the same error as if the ground truth was known. Finally, the case where the observed function is a fixed deterministic element of a Sobolev space of continuous functions is also considered, suggesting that bounding assumptions on some parameters can lead to different estimates.

Though denoising diffusion probabilistic models (DDPMs) have achieved remarkable generation results, the low sampling efficiency of DDPMs still limits further applications. Since DDPMs can be formulated as diffusion ordinary differential equations (ODEs), various fast sampling methods can be derived from solving diffusion ODEs. However, we notice that previous sampling methods with fixed analytical form are not robust with the error in the noise estimated from pretrained diffusion models. In this work, we construct an error-robust Adams solver (ERA-Solver), which utilizes the implicit Adams numerical method that consists of a predictor and a corrector. Different from the traditional predictor based on explicit Adams methods, we leverage a Lagrange interpolation function as the predictor, which is further enhanced with an error-robust strategy to adaptively select the Lagrange bases with lower error in the estimated noise. Experiments on Cifar10, LSUN-Church, and LSUN-Bedroom datasets demonstrate that our proposed ERA-Solver achieves 5.14, 9.42, and 9.69 Fenchel Inception Distance (FID) for image generation, with only 10 network evaluations.

Traditional static functional data analysis is facing new challenges due to streaming data, where data constantly flow in. A major challenge is that storing such an ever-increasing amount of data in memory is nearly impossible. In addition, existing inferential tools in online learning are mainly developed for finite-dimensional problems, while inference methods for functional data are focused on the batch learning setting. In this paper, we tackle these issues by developing functional stochastic gradient descent algorithms and proposing an online bootstrap resampling procedure to systematically study the inference problem for functional linear regression. In particular, the proposed estimation and inference procedures use only one pass over the data; thus they are easy to implement and suitable to the situation where data arrive in a streaming manner. Furthermore, we establish the convergence rate as well as the asymptotic distribution of the proposed estimator. Meanwhile, the proposed perturbed estimator from the bootstrap procedure is shown to enjoy the same theoretical properties, which provide the theoretical justification for our online inference tool. As far as we know, this is the first inference result on the functional linear regression model with streaming data. Simulation studies are conducted to investigate the finite-sample performance of the proposed procedure. An application is illustrated with the Beijing multi-site air-quality data.

With continuous outcomes, the average causal effect is typically defined using a contrast of expected potential outcomes. However, in the presence of skewed outcome data, the expectation may no longer be meaningful. In practice the typical approach is to either "ignore or transform" - ignore the skewness altogether or transform the outcome to obtain a more symmetric distribution, although neither approach is entirely satisfactory. Alternatively the causal effect can be redefined as a contrast of median potential outcomes, yet discussion of confounding-adjustment methods to estimate this parameter is limited. In this study we described and compared confounding-adjustment methods to address this gap. The methods considered were multivariable quantile regression, an inverse probability weighted (IPW) estimator, weighted quantile regression and two little-known implementations of g-computation for this problem. Motivated by a cohort investigation in the Longitudinal Study of Australian Children, we conducted a simulation study that found the IPW estimator, weighted quantile regression and g-computation implementations minimised bias when the relevant models were correctly specified, with g-computation additionally minimising the variance. These methods provide appealing alternatives to the common "ignore or transform" approach and multivariable quantile regression, enhancing our capability to obtain meaningful causal effect estimates with skewed outcome data.

In a recurrent events setting, we introduce a new score designed to evaluate the prediction ability, for a given model, of the expected cumulative number of recurrent events. This score allows to take into account the individual history of a patient through its external covariates and can be seen as an extension of the Brier Score for single time to event data but works for recurrent events with or without a terminal event. Theoretical results are provided that show that under standard assumptions in a recurrent event context, our score can be asymptotically decomposed as the sum of the theoretical mean squared error between the model and the true expected cumulative number of recurrent events and an inseparability term that does not depend on the model. This decomposition is further illustrated on simulations studies. It is also shown that this score should be used in comparison with a null model, such as a nonparametric estimator that does not include the covariates. Finally, the score is applied for the prediction of hospitalisations on a dataset of patients suffering from atrial fibrillation and a comparison of the predictions performance of different models, such as the Cox model or the Aalen Model, is investigated.

In realistic compressed sensing (CS) scenarios, the obtained measurements usually have to be quantized to a finite number of bits before transmission and/or storage, thus posing a challenge in recovery, especially for extremely coarse quantization such as 1-bit sign measurements. Recently Meng & Kabashima proposed an efficient quantized compressed sensing algorithm called QCS-SGM using the score-based generative models as an implicit prior. Thanks to the power of score-based generative models in capturing the rich structure of the prior, QCS-SGM achieves remarkably better performances than previous quantized CS methods. However, QCS-SGM is restricted to (approximately) row-orthogonal sensing matrices since otherwise the likelihood score becomes intractable. To address this challenging problem, in this paper we propose an improved version of QCS-SGM, which we call QCS-SGM+, which also works well for general matrices. The key idea is a Bayesian inference perspective of the likelihood score computation, whereby an expectation propagation algorithm is proposed to approximately compute the likelihood score. Experiments on a variety of baseline datasets demonstrate that the proposed QCS-SGM+ outperforms QCS-SGM by a large margin when sensing matrices are far from row-orthogonal.

Sparse linear models are a gold standard tool for interpretable machine learning, a field of emerging importance as predictive models permeate decision-making in many domains. Unfortunately, sparse linear models are far less flexible as functions of their input features than black-box models like deep neural networks. With this capability gap in mind, we study a not-uncommon situation where the input features dichotomize into two groups: explanatory features, which we wish to explain the model's predictions, and contextual features, which we wish to determine the model's explanations. This dichotomy leads us to propose the contextual lasso, a new statistical estimator that fits a sparse linear model whose sparsity pattern and coefficients can vary with the contextual features. The fitting process involves learning a nonparametric map, realized via a deep neural network, from contextual feature vector to sparse coefficient vector. To attain sparse coefficients, we train the network with a novel lasso regularizer in the form of a projection layer that maps the network's output onto the space of $\ell_1$-constrained linear models. Extensive experiments on real and synthetic data suggest that the learned models, which remain highly transparent, can be sparser than the regular lasso without sacrificing the predictive power of a standard deep neural network.

This PhD thesis contains several contributions to the field of statistical causal modeling. Statistical causal models are statistical models embedded with causal assumptions that allow for the inference and reasoning about the behavior of stochastic systems affected by external manipulation (interventions). This thesis contributes to the research areas concerning the estimation of causal effects, causal structure learning, and distributionally robust (out-of-distribution generalizing) prediction methods. We present novel and consistent linear and non-linear causal effects estimators in instrumental variable settings that employ data-dependent mean squared prediction error regularization. Our proposed estimators show, in certain settings, mean squared error improvements compared to both canonical and state-of-the-art estimators. We show that recent research on distributionally robust prediction methods has connections to well-studied estimators from econometrics. This connection leads us to prove that general K-class estimators possess distributional robustness properties. We, furthermore, propose a general framework for distributional robustness with respect to intervention-induced distributions. In this framework, we derive sufficient conditions for the identifiability of distributionally robust prediction methods and present impossibility results that show the necessity of several of these conditions. We present a new structure learning method applicable in additive noise models with directed trees as causal graphs. We prove consistency in a vanishing identifiability setup and provide a method for testing substructure hypotheses with asymptotic family-wise error control that remains valid post-selection. Finally, we present heuristic ideas for learning summary graphs of nonlinear time-series models.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司