亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The increasing size of large language models (LLMs) challenges their usage on resource-constrained platforms. For example, memory on modern GPUs is insufficient to hold LLMs that are hundreds of Gigabytes in size. Offloading is a popular method to escape this constraint by storing weights of an LLM model to host CPU memory and SSD, then loading each weight to GPU before every use. In our case study of offloaded inference, we found that due to the low bandwidth between storage devices and GPU, the latency of transferring large model weights from its offloaded location to GPU memory becomes the critical bottleneck with actual compute taking nearly 0% of runtime. To effectively reduce the weight transfer latency, we propose a novel sparse format that compresses the unstructured sparse pattern of pruned LLM weights to non-zero values with high compression ratio and low decompression overhead. Endor achieves this by expressing the positions of non-zero elements with a bitmap. Compared to offloaded inference using the popular Huggingface Accelerate, applying Endor accelerates OPT-66B by 1.70x and Llama2-70B by 1.78x. When direct weight transfer from SSD to GPU is leveraged, Endor achieves 2.25x speedup on OPT-66B and 2.37x speedup on Llama2-70B.

相關內容

Vision-language models (VLMs) are intensively used in many downstream tasks, including those requiring assessments of individuals appearing in the images. While VLMs perform well in simple single-person scenarios, in real-world applications, we often face complex situations in which there are persons of different genders doing different activities. We show that in such cases, VLMs are biased towards identifying the individual with the expected gender (according to ingrained gender stereotypes in the model or other forms of sample selection bias) as the performer of the activity. We refer to this bias in associating an activity with the gender of its actual performer in an image or text as the Gender-Activity Binding (GAB) bias and analyze how this bias is internalized in VLMs. To assess this bias, we have introduced the GAB dataset with approximately 5500 AI-generated images that represent a variety of activities, addressing the scarcity of real-world images for some scenarios. To have extensive quality control, the generated images are evaluated for their diversity, quality, and realism. We have tested 12 renowned pre-trained VLMs on this dataset in the context of text-to-image and image-to-text retrieval to measure the effect of this bias on their predictions. Additionally, we have carried out supplementary experiments to quantify the bias in VLMs' text encoders and to evaluate VLMs' capability to recognize activities. Our experiments indicate that VLMs experience an average performance decline of about 13.2% when confronted with gender-activity binding bias.

The recent rapid development of language models (LMs) has attracted attention in the field of time series, including multimodal time series modeling. However, we note that current time series multimodal methods are biased, often assigning a primary role to one modality while the other assumes a secondary role. They overlook the mutual benefits and complementary of different modalities. For example, in seizure diagnosis, relying solely on textual clinical reports makes it difficult to pinpoint the area and type of the disease, while electroencephalograms (EEGs) alone cannot provide an accurate diagnosis without considering the symptoms. In this study, based on the complementary information mining of time series multimodal data, we propose DualTime, a Dual-adapter multimodal language model for Time series representation implementing temporal-primary and textual-primary modeling simultaneously. By injecting lightweight adaption tokens, the LM pipeline shared by dual adapters encourages embedding alignment and achieves efficient fine-tuning. Empirically, our method outperforms state-of-the-art models in both supervised and unsupervised settings, highlighting the complementary benefits of different modalities. In addition, we conduct few-shot label transfer experiments, which further verifies the transferability and expressiveness of our proposed DualTime.

Despite the impressive capabilities of large language models (LLMs) across diverse applications, they still suffer from trustworthiness issues, such as hallucinations and misalignments. Retrieval-augmented language models (RAG) have been proposed to enhance the credibility of generations by grounding external knowledge, but the theoretical understandings of their generation risks remains unexplored. In this paper, we answer: 1) whether RAG can indeed lead to low generation risks, 2) how to provide provable guarantees on the generation risks of RAG and vanilla LLMs, and 3) what sufficient conditions enable RAG models to reduce generation risks. We propose C-RAG, the first framework to certify generation risks for RAG models. Specifically, we provide conformal risk analysis for RAG models and certify an upper confidence bound of generation risks, which we refer to as conformal generation risk. We also provide theoretical guarantees on conformal generation risks for general bounded risk functions under test distribution shifts. We prove that RAG achieves a lower conformal generation risk than that of a single LLM when the quality of the retrieval model and transformer is non-trivial. Our intensive empirical results demonstrate the soundness and tightness of our conformal generation risk guarantees across four widely-used NLP datasets on four state-of-the-art retrieval models.

The rapid advancement of language models (LMs) necessitates robust alignment with diverse user values. However, current preference optimization approaches often fail to capture the plurality of user opinions, instead reinforcing majority viewpoints and marginalizing minority perspectives. We introduce PERSONA, a reproducible test bed designed to evaluate and improve pluralistic alignment of LMs. We procedurally generate diverse user profiles from US census data, resulting in 1,586 synthetic personas with varied demographic and idiosyncratic attributes. We then generate a large-scale evaluation dataset containing 3,868 prompts and 317,200 feedback pairs obtained from our synthetic personas. Leveraging this dataset, we systematically evaluate LM capabilities in role-playing diverse users, verified through human judges, and the establishment of both a benchmark, PERSONA Bench, for pluralistic alignment approaches as well as an extensive dataset to create new and future benchmarks. The full dataset and benchmarks are available here: //www.synthlabs.ai/research/persona.

Transformers have emerged as the backbone of large language models (LLMs). However, generation remains inefficient due to the need to store in memory a cache of key-value representations for past tokens, whose size scales linearly with the input sequence length and batch size. As a solution, we propose Dynamic Memory Compression (DMC), a method for online key-value cache compression at inference time. Most importantly, the model learns to apply different compression ratios in different heads and layers. We retrofit pre-trained LLMs such as Llama 2 (7B, 13B and 70B) into DMC Transformers, achieving up to 7x throughput increase during auto-regressive inference on an NVIDIA H100 GPU. DMC is applied via continued pre-training on a negligible percentage of the original data without adding any extra parameters. DMC preserves the original downstream performance with up to 4x cache compression, outperforming up-trained grouped-query attention (GQA) and key-value eviction policies (H$_2$O, TOVA). GQA and DMC can be even combined to obtain compounded gains. Hence, DMC can serve as a drop-in replacement for KV caching in existing LLMs to fit longer contexts and larger batches within any given memory budget.

As large language models (LLMs) take on complex tasks, their inputs are supplemented with longer contexts that incorporate domain knowledge. Yet using long contexts is challenging, as nothing can be generated until the whole context is processed by the LLM. While the context-processing delay can be reduced by reusing the KV cache of a context across different inputs, fetching the KV cache, which contains large tensors, over the network can cause high extra network delays. CacheGen is a fast context-loading module for LLM systems. First, CacheGen uses a custom tensor encoder, leveraging KV cache's distributional properties to encode a KV cache into more compact bitstream representations with negligible decoding overhead, to save bandwidth usage. Second, CacheGen adapts the compression level of different parts of a KV cache to cope with changes in available bandwidth, in order to maintain low context-loading delay and high generation quality. % When available bandwidth drops, CacheGen may raise the compression level for a part of the context or recompute its KV cache on the fly. We test CacheGen on popular LLMs and datasets. Compared to the recent systems that reuse the KV cache, CacheGen reduces the KV cache size by 3.5-4.3x and the total delay in fetching and processing contexts by 3.2-3.7x with negligible impact on the LLM response quality. Our code is at: //github.com/UChi-JCL/CacheGen.

The computational difficulties of large language model (LLM) inference remain a significant obstacle to their widespread deployment. The need for many applications to support long input sequences and process them in large batches typically causes token-generation to be bottlenecked by data transfer. For this reason, we introduce SparQ Attention, a technique for increasing the inference throughput of LLMs by utilising memory bandwidth more efficiently within the attention layers, through selective fetching of the cached history. Our proposed technique can be applied directly to off-the-shelf LLMs during inference, without requiring any modification to the pre-training setup or additional fine-tuning. We show that SparQ Attention brings up to 8x savings in attention data transfers without substantial drops in accuracy, by evaluating Llama 2 and 3, Mistral, Gemma and Pythia models on a wide range of downstream tasks.

Large language models (LLMs) have demonstrated great success in various fields, benefiting from their huge amount of parameters that store knowledge. However, LLMs still suffer from several key issues, such as hallucination problems, knowledge update issues, and lacking domain-specific expertise. The appearance of retrieval-augmented generation (RAG), which leverages an external knowledge database to augment LLMs, makes up those drawbacks of LLMs. This paper reviews all significant techniques of RAG, especially in the retriever and the retrieval fusions. Besides, tutorial codes are provided for implementing the representative techniques in RAG. This paper further discusses the RAG training, including RAG with/without datastore update. Then, we introduce the application of RAG in representative natural language processing tasks and industrial scenarios. Finally, this paper discusses the future directions and challenges of RAG for promoting its development.

Since the launch of ChatGPT, a powerful AI Chatbot developed by OpenAI, large language models (LLMs) have made significant advancements in both academia and industry, bringing about a fundamental engineering paradigm shift in many areas. While LLMs are powerful, it is also crucial to best use their power where "prompt'' plays a core role. However, the booming LLMs themselves, including excellent APIs like ChatGPT, have several inherent limitations: 1) temporal lag of training data, and 2) the lack of physical capabilities to perform external actions. Recently, we have observed the trend of utilizing prompt-based tools to better utilize the power of LLMs for downstream tasks, but a lack of systematic literature and standardized terminology, partly due to the rapid evolution of this field. Therefore, in this work, we survey related prompting tools and promote the concept of the "Prompting Framework" (PF), i.e. the framework for managing, simplifying, and facilitating interaction with large language models. We define the lifecycle of the PF as a hierarchical structure, from bottom to top, namely: Data Level, Base Level, Execute Level, and Service Level. We also systematically depict the overall landscape of the emerging PF field and discuss potential future research and challenges. To continuously track the developments in this area, we maintain a repository at //github.com/lxx0628/Prompting-Framework-Survey, which can be a useful resource sharing platform for both academic and industry in this field.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

北京阿比特科技有限公司