亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The rise of mobile devices with abundant sensory data and local computing capabilities has driven the trend of federated learning (FL) on these devices. And personalized FL (PFL) emerges to train specific deep models for each mobile device to address data heterogeneity and varying performance preferences. However, mobile training times vary significantly, resulting in either delay (when waiting for slower devices for aggregation) or accuracy decline (when aggregation proceeds without waiting). In response, we propose a shift towards asynchronous PFL, where the server aggregates updates as soon as they are available. Nevertheless, existing asynchronous protocols are unfit for PFL because they are devised for federated training of a single global model. They suffer from slow convergence and decreased accuracy when confronted with severe data heterogeneity prevalent in PFL. Furthermore, they often exclude slower devices for staleness control, which notably compromises accuracy when these devices possess critical personalized data. Therefore, we propose EchoPFL, a coordination mechanism for asynchronous PFL. Central to EchoPFL is to include updates from all mobile devices regardless of their latency. To cope with the inevitable staleness from slow devices, EchoPFL revisits model broadcasting. It intelligently converts the unscalable broadcast to on-demand broadcast, leveraging the asymmetrical bandwidth in wireless networks and the dynamic clustering-based PFL. Experiments show that compared to status quo approaches, EchoPFL achieves a reduction of up to 88.2% in convergence time, an improvement of up to 46% in accuracy, and a decrease of 37% in communication costs

相關內容

機器學習(xi)系統設計系統評估標準

The proliferation of mobile devices and social media has revolutionized content dissemination, with short-form video becoming increasingly prevalent. This shift has introduced the challenge of video reframing to fit various screen aspect ratios, a process that highlights the most compelling parts of a video. Traditionally, video reframing is a manual, time-consuming task requiring professional expertise, which incurs high production costs. A potential solution is to adopt some machine learning models, such as video salient object detection, to automate the process. However, these methods often lack generalizability due to their reliance on specific training data. The advent of powerful large language models (LLMs) open new avenues for AI capabilities. Building on this, we introduce Reframe Any Video Agent (RAVA), a LLM-based agent that leverages visual foundation models and human instructions to restructure visual content for video reframing. RAVA operates in three stages: perception, where it interprets user instructions and video content; planning, where it determines aspect ratios and reframing strategies; and execution, where it invokes the editing tools to produce the final video. Our experiments validate the effectiveness of RAVA in video salient object detection and real-world reframing tasks, demonstrating its potential as a tool for AI-powered video editing.

We propose a middleware solution designed to facilitate seamless integration of privacy using zero-knowledge proofs within various multi-chain protocols, encompassing domains such as DeFi, gaming, social networks, DAOs, e-commerce, and the metaverse. Our design achieves two divergent goals. zkFi aims to preserve consumer privacy while achieving regulation compliance through zero-knowledge proofs. These ends are simultaneously achievable. zkFi protocol is designed to function as a plug-and-play solution, offering developers the flexibility to handle transactional assets while abstracting away the complexities associated with zero-knowledge proofs. Notably, specific expertise in zero-knowledge proofs (ZKP) is optional, attributed to zkFi's modular approach and software development kit (SDK) availability.

Recommender systems are essential for online applications, and sequential recommendation has enjoyed significant prevalence due to its expressive ability to capture dynamic user interests. However, previous sequential modeling methods still have limitations in capturing contextual information. The primary reason for this issue is that language models often lack an understanding of domain-specific knowledge and item-related textual content. To address this issue, we adopt a new sequential recommendation paradigm and propose LANCER, which leverages the semantic understanding capabilities of pre-trained language models to generate personalized recommendations. Our approach bridges the gap between language models and recommender systems, resulting in more human-like recommendations. We demonstrate the effectiveness of our approach through experiments on several benchmark datasets, showing promising results and providing valuable insights into the influence of our model on sequential recommendation tasks. Furthermore, our experimental codes are publicly available.

The increasing reliance of drivers on navigation applications has made transportation networks more susceptible to data-manipulation attacks by malicious actors. Adversaries may exploit vulnerabilities in the data collection or processing of navigation services to inject false information, and to thus interfere with the drivers' route selection. Such attacks can significantly increase traffic congestions, resulting in substantial waste of time and resources, and may even disrupt essential services that rely on road networks. To assess the threat posed by such attacks, we introduce a computational framework to find worst-case data-injection attacks against transportation networks. First, we devise an adversarial model with a threat actor who can manipulate drivers by increasing the travel times that they perceive on certain roads. Then, we employ hierarchical multi-agent reinforcement learning to find an approximate optimal adversarial strategy for data manipulation. We demonstrate the applicability of our approach through simulating attacks on the Sioux Falls, ND network topology.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

Edge computing facilitates low-latency services at the network's edge by distributing computation, communication, and storage resources within the geographic proximity of mobile and Internet-of-Things (IoT) devices. The recent advancement in Unmanned Aerial Vehicles (UAVs) technologies has opened new opportunities for edge computing in military operations, disaster response, or remote areas where traditional terrestrial networks are limited or unavailable. In such environments, UAVs can be deployed as aerial edge servers or relays to facilitate edge computing services. This form of computing is also known as UAV-enabled Edge Computing (UEC), which offers several unique benefits such as mobility, line-of-sight, flexibility, computational capability, and cost-efficiency. However, the resources on UAVs, edge servers, and IoT devices are typically very limited in the context of UEC. Efficient resource management is, therefore, a critical research challenge in UEC. In this article, we present a survey on the existing research in UEC from the resource management perspective. We identify a conceptual architecture, different types of collaborations, wireless communication models, research directions, key techniques and performance indicators for resource management in UEC. We also present a taxonomy of resource management in UEC. Finally, we identify and discuss some open research challenges that can stimulate future research directions for resource management in UEC.

The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.

With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Large knowledge graphs often grow to store temporal facts that model the dynamic relations or interactions of entities along the timeline. Since such temporal knowledge graphs often suffer from incompleteness, it is important to develop time-aware representation learning models that help to infer the missing temporal facts. While the temporal facts are typically evolving, it is observed that many facts often show a repeated pattern along the timeline, such as economic crises and diplomatic activities. This observation indicates that a model could potentially learn much from the known facts appeared in history. To this end, we propose a new representation learning model for temporal knowledge graphs, namely CyGNet, based on a novel timeaware copy-generation mechanism. CyGNet is not only able to predict future facts from the whole entity vocabulary, but also capable of identifying facts with repetition and accordingly predicting such future facts with reference to the known facts in the past. We evaluate the proposed method on the knowledge graph completion task using five benchmark datasets. Extensive experiments demonstrate the effectiveness of CyGNet for predicting future facts with repetition as well as de novo fact prediction.

北京阿比特科技有限公司