亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Document-level relation extraction typically relies on text-based encoders and hand-coded pooling heuristics to aggregate information learned by the encoder. In this paper, we leverage the intrinsic graph processing capabilities of the Transformer model and propose replacing hand-coded pooling methods with new tokens in the input, which are designed to aggregate information via explicit graph relations in the computation of attention weights. We introduce a joint text-graph Transformer model and a graph-assisted declarative pooling (GADePo) specification of the input, which provides explicit and high-level instructions for information aggregation. GADePo allows the pooling process to be guided by domain-specific knowledge or desired outcomes but still learned by the Transformer, leading to more flexible and customisable pooling strategies. We evaluate our method across diverse datasets and models and show that our approach yields promising results that are consistently better than those achieved by the hand-coded pooling functions.

相關內容

Large-scale LiDAR mappings and localization leverage place recognition techniques to mitigate odometry drifts, ensuring accurate mapping. These techniques utilize scene representations from LiDAR point clouds to identify previously visited sites within a database. Local descriptors, assigned to each point within a point cloud, are aggregated to form a scene representation for the point cloud. These descriptors are also used to re-rank the retrieved point clouds based on geometric fitness scores. We propose SALSA, a novel, lightweight, and efficient framework for LiDAR place recognition. It consists of a Sphereformer backbone that uses radial window attention to enable information aggregation for sparse distant points, an adaptive self-attention layer to pool local descriptors into tokens, and a multi-layer-perceptron Mixer layer for aggregating the tokens to generate a scene descriptor. The proposed framework outperforms existing methods on various LiDAR place recognition datasets in terms of both retrieval and metric localization while operating in real-time.

Repository-level code completion aims to generate code for unfinished code snippets within the context of a specified repository. Existing approaches mainly rely on retrieval-augmented generation strategies due to limitations in input sequence length. However, traditional lexical-based retrieval methods like BM25 struggle to capture code semantics, while model-based retrieval methods face challenges due to the lack of labeled data for training. Therefore, we propose RLCoder, a novel reinforcement learning framework, which can enable the retriever to learn to retrieve useful content for code completion without the need for labeled data. Specifically, we iteratively evaluate the usefulness of retrieved content based on the perplexity of the target code when provided with the retrieved content as additional context, and provide feedback to update the retriever parameters. This iterative process enables the retriever to learn from its successes and failures, gradually improving its ability to retrieve relevant and high-quality content. Considering that not all situations require information beyond code files and not all retrieved context is helpful for generation, we also introduce a stop signal mechanism, allowing the retriever to decide when to retrieve and which candidates to retain autonomously. Extensive experimental results demonstrate that RLCoder consistently outperforms state-of-the-art methods on CrossCodeEval and RepoEval, achieving 12.2% EM improvement over previous methods. Moreover, experiments show that our framework can generalize across different programming languages and further improve previous methods like RepoCoder. We provide the code and data at //github.com/DeepSoftwareAnalytics/RLCoder.

Safety-critical applications such as autonomous driving require robust 3D environment perception algorithms capable of handling diverse and ambiguous surroundings. The predictive performance of classification models is heavily influenced by the dataset and the prior knowledge provided by the annotated labels. While labels guide the learning process, they often fail to capture the inherent relationships between classes that are naturally understood by humans. We propose a training strategy for a 3D LiDAR semantic segmentation model that learns structural relationships between classes through abstraction. This is achieved by implicitly modeling these relationships using a learning rule for hierarchical multi-label classification (HMC). Our detailed analysis demonstrates that this training strategy not only improves the model's confidence calibration but also retains additional information useful for downstream tasks such as fusion, prediction, and planning.

Urban-level three-dimensional reconstruction for modern applications demands high rendering fidelity while minimizing computational costs. The advent of Neural Radiance Fields (NeRF) has enhanced 3D reconstruction, yet it exhibits artifacts under multiple viewpoints. In this paper, we propose a new NeRF framework method to address these issues. Our method uses image content and pose data to iteratively plan the next best view. A crucial aspect of this method involves uncertainty estimation, guiding the selection of views with maximum information gain from a candidate set. This iterative process enhances rendering quality over time. Simultaneously, we introduce the Vonoroi diagram and threshold sampling together with flight classifier to boost the efficiency, while keep the original NeRF network intact. It can serve as a plug-in tool to assist in better rendering, outperforming baselines and similar prior works.

Vision transformers (ViTs) have demonstrated their superior accuracy for computer vision tasks compared to convolutional neural networks (CNNs). However, ViT models are often computation-intensive for efficient deployment on resource-limited edge devices. This work proposes Quasar-ViT, a hardware-oriented quantization-aware architecture search framework for ViTs, to design efficient ViT models for hardware implementation while preserving the accuracy. First, Quasar-ViT trains a supernet using our row-wise flexible mixed-precision quantization scheme, mixed-precision weight entanglement, and supernet layer scaling techniques. Then, it applies an efficient hardware-oriented search algorithm, integrated with hardware latency and resource modeling, to determine a series of optimal subnets from supernet under different inference latency targets. Finally, we propose a series of model-adaptive designs on the FPGA platform to support the architecture search and mitigate the gap between the theoretical computation reduction and the practical inference speedup. Our searched models achieve 101.5, 159.6, and 251.6 frames-per-second (FPS) inference speed on the AMD/Xilinx ZCU102 FPGA with 80.4%, 78.6%, and 74.9% top-1 accuracy, respectively, for the ImageNet dataset, consistently outperforming prior works.

Implicit neural representations (INRs) have significantly advanced the field of arbitrary-scale super-resolution (ASSR) of images. Most existing INR-based ASSR networks first extract features from the given low-resolution image using an encoder, and then render the super-resolved result via a multi-layer perceptron decoder. Although these approaches have shown promising results, their performance is constrained by the limited representation ability of discrete latent codes in the encoded features. In this paper, we propose a novel ASSR method named GaussianSR that overcomes this limitation through 2D Gaussian Splatting (2DGS). Unlike traditional methods that treat pixels as discrete points, GaussianSR represents each pixel as a continuous Gaussian field. The encoded features are simultaneously refined and upsampled by rendering the mutually stacked Gaussian fields. As a result, long-range dependencies are established to enhance representation ability. In addition, a classifier is developed to dynamically assign Gaussian kernels to all pixels to further improve flexibility. All components of GaussianSR (i.e., encoder, classifier, Gaussian kernels, and decoder) are jointly learned end-to-end. Experiments demonstrate that GaussianSR achieves superior ASSR performance with fewer parameters than existing methods while enjoying interpretable and content-aware feature aggregations.

The scarcity of realistic datasets poses a significant challenge in benchmarking recommender systems and social network analysis methods and techniques. A common and effective solution is to generate synthetic data that simulates realistic interactions. However, although various methods have been proposed, the existing literature still lacks generators that are fully adaptable and allow easy manipulation of the underlying data distributions and structural properties. To address this issue, the present work introduces GenRec, a novel framework for generating synthetic user-item interactions that exhibit realistic and well-known properties observed in recommendation scenarios. The framework is based on a stochastic generative process based on latent factor modeling. Here, the latent factors can be exploited to yield long-tailed preference distributions, and at the same time they characterize subpopulations of users and topic-based item clusters. Notably, the proposed framework is highly flexible and offers a wide range of hyper-parameters for customizing the generation of user-item interactions. The code used to perform the experiments is publicly available at //anonymous.4open.science/r/GenRec-DED3.

Scene text image super-resolution (STISR) aims at simultaneously increasing the resolution and readability of low-resolution scene text images, thus boosting the performance of the downstream recognition task. Two factors in scene text images, visual structure and semantic information, affect the recognition performance significantly. To mitigate the effects from these factors, this paper proposes a Prior-Enhanced Attention Network (PEAN). Specifically, an attention-based modulation module is leveraged to understand scene text images by neatly perceiving the local and global dependence of images, despite the shape of the text. Meanwhile, a diffusion-based module is developed to enhance the text prior, hence offering better guidance for the SR network to generate SR images with higher semantic accuracy. Additionally, a multi-task learning paradigm is employed to optimize the network, enabling the model to generate legible SR images. As a result, PEAN establishes new SOTA results on the TextZoom benchmark. Experiments are also conducted to analyze the importance of the enhanced text prior as a means of improving the performance of the SR network. Code is available at //github.com/jdfxzzy/PEAN.

Robotic collectives for military and disaster response applications require coalition formation algorithms to partition robots into appropriate task teams. Collectives' missions will often incorporate tasks that require multiple high-level robot behaviors or services, which coalition formation must accommodate. The highly dynamic and unstructured application domains also necessitate that coalition formation algorithms produce near optimal solutions (i.e., >95% utility) in near real-time (i.e., <5 minutes) with very large collectives (i.e., hundreds of robots). No previous coalition formation algorithm satisfies these requirements. An initial evaluation found that traditional auction-based algorithms' runtimes are too long, even though the centralized simulator incorporated ideal conditions unlikely to occur in real-world deployments (i.e., synchronization across robots and perfect, instantaneous communication). The hedonic game-based GRAPE algorithm can produce solutions in near real-time, but cannot be applied to multiple service collectives. This manuscript integrates GRAPE and a services model, producing GRAPE-S and Pair-GRAPE-S. These algorithms and two auction baselines were evaluated using a centralized simulator with up to 1000 robots, and via the largest distributed coalition formation simulated evaluation to date, with up to 500 robots. The evaluations demonstrate that auctions transfer poorly to distributed collectives, resulting in excessive runtimes and low utility solutions. GRAPE-S satisfies the target domains' coalition formation requirements, producing near optimal solutions in near real-time, and Pair-GRAPE-S more than satisfies the domain requirements, producing optimal solutions in near real-time. GRAPE-S and Pair-GRAPE-S are the first algorithms demonstrated to support near real-time coalition formation for very large, distributed collectives with multiple services.

Retrieving object instances among cluttered scenes efficiently requires compact yet comprehensive regional image representations. Intuitively, object semantics can help build the index that focuses on the most relevant regions. However, due to the lack of bounding-box datasets for objects of interest among retrieval benchmarks, most recent work on regional representations has focused on either uniform or class-agnostic region selection. In this paper, we first fill the void by providing a new dataset of landmark bounding boxes, based on the Google Landmarks dataset, that includes $94k$ images with manually curated boxes from $15k$ unique landmarks. Then, we demonstrate how a trained landmark detector, using our new dataset, can be leveraged to index image regions and improve retrieval accuracy while being much more efficient than existing regional methods. In addition, we further introduce a novel regional aggregated selective match kernel (R-ASMK) to effectively combine information from detected regions into an improved holistic image representation. R-ASMK boosts image retrieval accuracy substantially at no additional memory cost, while even outperforming systems that index image regions independently. Our complete image retrieval system improves upon the previous state-of-the-art by significant margins on the Revisited Oxford and Paris datasets. Code and data will be released.

北京阿比特科技有限公司