亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study accelerated optimization methods in the Gaussian phase retrieval problem. In this setting, we prove that gradient methods with Polyak or Nesterov momentum have similar implicit regularization to gradient descent. This implicit regularization ensures that the algorithms remain in a nice region, where the cost function is strongly convex and smooth despite being nonconvex in general. This ensures that these accelerated methods achieve faster rates of convergence than gradient descent. Experimental evidence demonstrates that the accelerated methods converge faster than gradient descent in practice.

相關內容

We study contextual bandits in the presence of a stage-wise constraint (a constraint at each round), when the constraint must be satisfied both with high probability and in expectation. Obviously the setting where the constraint is in expectation is a relaxation of the one with high probability. We start with the linear case where both the contextual bandit problem (reward function) and the stage-wise constraint (cost function) are linear. In each of the high probability and in expectation settings, we propose an upper-confidence bound algorithm for the problem and prove a $T$-round regret bound for it. Our algorithms balance exploration and constraint satisfaction using a novel idea that scales the radii of the reward and cost confidence sets with different scaling factors. We also prove a lower-bound for this constrained problem, show how our algorithms and analyses can be extended to multiple constraints, and provide simulations to validate our theoretical results. In the high probability setting, we describe the minimum requirements for the action set in order for our algorithm to be tractable. In the setting that the constraint is in expectation, we further specialize our results to multi-armed bandits and propose a computationally efficient algorithm for this setting with regret analysis. Finally, we extend our results to the case where the reward and cost functions are both non-linear. We propose an algorithm for this case and prove a regret bound for it that characterize the function class complexity by the eluder dimension.

Strategies for partially observable Markov decision processes (POMDP) typically require memory. One way to represent this memory is via automata. We present a method to learn an automaton representation of a strategy using the L*-algorithm. Compared to the tabular representation of a strategy, the resulting automaton is dramatically smaller and thus also more explainable. Moreover, in the learning process, our heuristics may even improve the strategy's performance. In contrast to approaches that synthesize an automaton directly from the POMDP thereby solving it, our approach is incomparably more scalable.

Text reuse is a methodological element of fundamental importance in humanities research: pieces of text that re-appear across different documents, verbatim or paraphrased, provide invaluable information about the historical spread and evolution of ideas. Large modern digitized corpora enable the joint analysis of text collections that span entire centuries and the detection of large-scale patterns, impossible to detect with traditional small-scale analysis. For this opportunity to materialize, it is necessary to develop efficient data science systems that perform the corresponding analysis tasks. In this paper, we share insights from ReceptionReader, a system for analyzing text reuse in large historical corpora. The system is built upon billions of instances of text reuses from large digitized corpora of 18th-century texts. Its main functionality is to perform downstream text reuse analysis tasks, such as finding reuses that stem from a given article or identifying the most reused quotes from a set of documents, with each task expressed as a database query. For the purposes of the paper, we discuss the related design choices including various database normalization levels and query execution frameworks, such as distributed data processing (Apache Spark), indexed row store engine (MariaDB Aria), and compressed column store engine (MariaDB Columnstore). Moreover, we present an extensive evaluation with various metrics of interest (latency, storage size, and computing costs) for varying workloads, and we offer insights from the trade-offs we observed and the choices that emerged as optimal in our setting. In summary, our results show that (1) for the workloads that are most relevant to text-reuse analysis, the MariaDB Aria framework emerges as the overall optimal choice, (2) big data processing (Apache Spark) is irreplaceable for all processing stages of the system's pipeline.

This study considers tests for coefficient randomness in predictive regressions. Our focus is on how tests for coefficient randomness are influenced by the persistence of random coefficient. We find that when the random coefficient is stationary, or I(0), Nyblom's (1989) LM test loses its optimality (in terms of power), which is established against the alternative of integrated, or I(1), random coefficient. We demonstrate this by constructing tests that are more powerful than the LM test when random coefficient is stationary, although these tests are dominated in terms of power by the LM test when random coefficient is integrated. This implies that the best test for coefficient randomness differs from context to context, and practitioners should take into account the persistence of potentially random coefficient and choose from several tests accordingly. We apply tests for coefficient constancy to real data. The results mostly reverse the conclusion of an earlier empirical study.

The prescriptions of our two most prominent strands of decision theory, evidential and causal, differ in a general class of problems known as Newcomb problems. In these, evidential decision theory prescribes choosing a dominated act. Attempts have been made at reconciling the two theories by relying on additional requirements such as ratification (Jeffrey 1983) or "tickles" (Eells 1982). It has been argued that such attempts have failed (Lewis 1981a; Skyrms 1982). More recently, Huttegger (forthcoming) has developed a version of deliberative decision theory that reconciles the prescriptions of the evidentialist and causalist. In this paper, I extend this framework to problems characterised by decision instability, and show that it cannot deliver a resolute answer under a plausible specification of the tickle. I prove that there exists a robust method of determining whether the specification of the tickle matters for all two-state, two-act problems whose payoff tables exhibit some basic mathematical relationships. One upshot is that we have a principled way of knowing ex-ante whether a reconciliation of evidential and causal decision theory is plausible for a wide range of decision problems under this framework. Another upshot is that the tickle approach needs further work to achieve full reconciliation.

The prevalence of the powerful multilingual models, such as Whisper, has significantly advanced the researches on speech recognition. However, these models often struggle with handling the code-switching setting, which is essential in multilingual speech recognition. Recent studies have attempted to address this setting by separating the modules for different languages to ensure distinct latent representations for languages. Some other methods considered the switching mechanism based on language identification. In this study, a new attention-guided adaptation is proposed to conduct parameter-efficient learning for bilingual ASR. This method selects those attention heads in a model which closely express language identities and then guided those heads to be correctly attended with their corresponding languages. The experiments on the Mandarin-English code-switching speech corpus show that the proposed approach achieves a 14.2% mixed error rate, surpassing state-of-the-art method, where only 5.6% additional parameters over Whisper are trained.

In this study, we establish that deep neural networks employing ReLU and ReLU$^2$ activation functions can effectively represent Lagrange finite element functions of any order on various simplicial meshes in arbitrary dimensions. We introduce two novel formulations for globally expressing the basis functions of Lagrange elements, tailored for both specific and arbitrary meshes. These formulations are based on a geometric decomposition of the elements, incorporating several insightful and essential properties of high-dimensional simplicial meshes, barycentric coordinate functions, and global basis functions of linear elements. This representation theory facilitates a natural approximation result for such deep neural networks. Our findings present the first demonstration of how deep neural networks can systematically generate general continuous piecewise polynomial functions on both specific or arbitrary simplicial meshes.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Knowledge graph completion aims to predict missing relations between entities in a knowledge graph. While many different methods have been proposed, there is a lack of a unifying framework that would lead to state-of-the-art results. Here we develop PathCon, a knowledge graph completion method that harnesses four novel insights to outperform existing methods. PathCon predicts relations between a pair of entities by: (1) Considering the Relational Context of each entity by capturing the relation types adjacent to the entity and modeled through a novel edge-based message passing scheme; (2) Considering the Relational Paths capturing all paths between the two entities; And, (3) adaptively integrating the Relational Context and Relational Path through a learnable attention mechanism. Importantly, (4) in contrast to conventional node-based representations, PathCon represents context and path only using the relation types, which makes it applicable in an inductive setting. Experimental results on knowledge graph benchmarks as well as our newly proposed dataset show that PathCon outperforms state-of-the-art knowledge graph completion methods by a large margin. Finally, PathCon is able to provide interpretable explanations by identifying relations that provide the context and paths that are important for a given predicted relation.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

北京阿比特科技有限公司