亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Randomized controlled trials are considered the gold standard to evaluate the treatment effect (estimand) for efficacy and safety. According to the recent International Council on Harmonisation (ICH)-E9 addendum (R1), intercurrent events (ICEs) need to be considered when defining an estimand, and principal stratum is one of the five strategies to handle ICEs. Qu et al. (2020, Statistics in Biopharmaceutical Research 12:1-18) proposed estimators for the adherer average causal effect (AdACE) for estimating the treatment difference for those who adhere to one or both treatments based on the causal-inference framework, and demonstrated the consistency of those estimators; however, this method requires complex custom programming related to high-dimensional numeric integrations. In this article, we implemented the AdACE estimators using multiple imputation (MI) and constructs CI through bootstrapping. A simulation study showed that the MI-based estimators provided consistent estimators with the nominal coverage probabilities of CIs for the treatment difference for the adherent populations of interest. As an illustrative example, the new method was applied to data from a real clinical trial comparing 2 types of basal insulin for patients with type 1 diabetes.

相關內容

Heterogeneous treatment effect models allow us to compare treatments at subgroup and individual levels, and are of increasing popularity in applications like personalized medicine, advertising, and education. In this talk, we first survey different causal estimands used in practice, which focus on estimating the difference in conditional means. We then propose DINA, the difference in natural parameters, to quantify heterogeneous treatment effect in exponential families and the Cox model. For binary outcomes and survival times, DINA is both convenient and more practical for modeling the influence of covariates on the treatment effect. Second, we introduce a meta-algorithm for DINA, which allows practitioners to use powerful off-the-shelf machine learning tools for the estimation of nuisance functions, and which is also statistically robust to errors in inaccurate nuisance function estimation. We demonstrate the efficacy of our method combined with various machine learning base-learners on simulated and real datasets.

Reference priors are theoretically attractive for the analysis of geostatistical data since they enable automatic Bayesian analysis and have desirable Bayesian and frequentist properties. But their use is hindered by computational hurdles that make their application in practice challenging. In this work, we derive a new class of default priors that approximate reference priors for the parameters of some Gaussian random fields. It is based on an approximation to the integrated likelihood of the covariance parameters derived from the spectral approximation of stationary random fields. This prior depends on the structure of the mean function and the spectral density of the model evaluated at a set of spectral points associated with an auxiliary regular grid. In addition to preserving the desirable Bayesian and frequentist properties, these approximate reference priors are more stable, and their computations are much less onerous than those of exact reference priors. Unlike exact reference priors, the marginal approximate reference prior of correlation parameter is always proper, regardless of the mean function or the smoothness of the correlation function. This property has important consequences for covariance model selection. An illustration comparing default Bayesian analyses is provided with a data set of lead pollution in Galicia, Spain.

This paper considers identification and estimation of the causal effect of the time Z until a subject is treated on a survival outcome T. The treatment is not randomly assigned, T is randomly right censored by a random variable C and the time to treatment Z is right censored by min(T,C) The endogeneity issue is treated using an instrumental variable explaining Z and independent of the error term of the model. We study identification in a fully nonparametric framework. We show that our specification generates an integral equation, of which the regression function of interest is a solution. We provide identification conditions that rely on this identification equation. For estimation purposes, we assume that the regression function follows a parametric model. We propose an estimation procedure and give conditions under which the estimator is asymptotically normal. The estimators exhibit good finite sample properties in simulations. Our methodology is applied to find evidence supporting the efficacy of a therapy for burn-out.

Scientists interested in studying natural phenomena often take physical samples for later analysis at locations specified by expert heuristics. Instead, we propose to guide scientists' physical sampling by using a robot to perform an adaptive sampling survey to find locations to suggest that correspond to the quantile values of pre-specified quantiles of interest. We develop a robot planner using novel objective functions to improve the estimates of the quantile values over time and an approach to find locations which correspond to the quantile values. We demonstrate our approach on two different sampling tasks in simulation using previously collected aquatic data and validate it in a field trial. Our approach outperforms objectives that maximize spatial coverage or find extrema in planning and is able to localize the quantile spatial locations.

A Bayesian multivariate model with a structured covariance matrix for multi-way nested data is proposed. This flexible modeling framework allows for positive and for negative associations among clustered observations, and generalizes the well-known dependence structure implied by random effects. A conjugate shifted-inverse gamma prior is proposed for the covariance parameters which ensures that the covariance matrix remains positive definite under posterior analysis. A numerically efficient Gibbs sampling procedure is defined for balanced nested designs, and is validated using two simulation studies. For a top-layer unbalanced nested design, the procedure requires an additional data augmentation step. The proposed data augmentation procedure facilitates sampling latent variables from (truncated) univariate normal distributions, and avoids numerical computation of the inverse of the structured covariance matrix. The Bayesian multivariate (linear transformation) model is applied to two-way nested interval-censored event times to analyze differences in adverse events between three groups of patients, who were randomly allocated to treatment with different stents (BIO-RESORT). The parameters of the structured covariance matrix represent unobserved heterogeneity in treatment effects and are examined to detect differential treatment effects.

Due to the COVID 19 pandemic, smartphone-based proximity tracing systems became of utmost interest. Many of these systems use Bluetooth Low Energy (BLE) signals to estimate the distance between two persons. The quality of this method depends on many factors and, therefore, does not always deliver accurate results. In this paper, we present a multi-channel approach to improve proximity estimation, and a novel, publicly available dataset that contains matched IEEE 802.11 (2.4 GHz and 5 GHz) and BLE signal strength data, measured in four different environments. We have developed and evaluated a combined classification model based on BLE and IEEE 802.11 signals. Our approach significantly improves the distance estimation and consequently also the contact tracing accuracy. We are able to achieve good results with our approach in everyday public transport scenarios. However, in our implementation based on IEEE 802.11 probe requests, we also encountered privacy problems and limitations due to the consistency and interval at which such probes are sent. We discuss these limitations and sketch how our approach could be improved to make it suitable for real-world deployment.

In this paper we propose a flexible nested error regression small area model with high dimensional parameter that incorporates heterogeneity in regression coefficients and variance components. We develop a new robust small area specific estimating equations method that allows appropriate pooling of a large number of areas in estimating small area specific model parameters. We propose a parametric bootstrap and jackknife method to estimate not only the mean squared errors but also other commonly used uncertainty measures such as standard errors and coefficients of variation. We conduct both modelbased and design-based simulation experiments and real-life data analysis to evaluate the proposed methodology

Seam-cutting and seam-driven techniques have been proven effective for handling imperfect image series in image stitching. Generally, seam-driven is to utilize seam-cutting to find a best seam from one or finite alignment hypotheses based on a predefined seam quality metric. However, the quality metrics in most methods are defined to measure the average performance of the pixels on the seam without considering the relevance and variance among them. This may cause that the seam with the minimal measure is not optimal (perception-inconsistent) in human perception. In this paper, we propose a novel coarse-to-fine seam estimation method which applies the evaluation in a different way. For pixels on the seam, we develop a patch-point evaluation algorithm concentrating more on the correlation and variation of them. The evaluations are then used to recalculate the difference map of the overlapping region and reestimate a stitching seam. This evaluation-reestimation procedure iterates until the current seam changes negligibly comparing with the previous seams. Experiments show that our proposed method can finally find a nearly perception-consistent seam after several iterations, which outperforms the conventional seam-cutting and other seam-driven methods.

We study few-shot learning in natural language domains. Compared to many existing works that apply either metric-based or optimization-based meta-learning to image domain with low inter-task variance, we consider a more realistic setting, where tasks are diverse. However, it imposes tremendous difficulties to existing state-of-the-art metric-based algorithms since a single metric is insufficient to capture complex task variations in natural language domain. To alleviate the problem, we propose an adaptive metric learning approach that automatically determines the best weighted combination from a set of metrics obtained from meta-training tasks for a newly seen few-shot task. Extensive quantitative evaluations on real-world sentiment analysis and dialog intent classification datasets demonstrate that the proposed method performs favorably against state-of-the-art few shot learning algorithms in terms of predictive accuracy. We make our code and data available for further study.

In this paper we introduce a covariance framework for the analysis of EEG and MEG data that takes into account observed temporal stationarity on small time scales and trial-to-trial variations. We formulate a model for the covariance matrix, which is a Kronecker product of three components that correspond to space, time and epochs/trials, and consider maximum likelihood estimation of the unknown parameter values. An iterative algorithm that finds approximations of the maximum likelihood estimates is proposed. We perform a simulation study to assess the performance of the estimator and investigate the influence of different assumptions about the covariance factors on the estimated covariance matrix and on its components. Apart from that, we illustrate our method on real EEG and MEG data sets. The proposed covariance model is applicable in a variety of cases where spontaneous EEG or MEG acts as source of noise and realistic noise covariance estimates are needed for accurate dipole localization, such as in evoked activity studies, or where the properties of spontaneous EEG or MEG are themselves the topic of interest, such as in combined EEG/fMRI experiments in which the correlation between EEG and fMRI signals is investigated.

北京阿比特科技有限公司