Leveraging large-scale data can introduce performance gains on many computer vision tasks. Unfortunately, this does not happen in object detection when training a single model under multiple datasets together. We observe two main obstacles: taxonomy difference and bounding box annotation inconsistency, which introduces domain gaps in different datasets that prevents us from joint training. In this paper, we show that these two challenges can be effectively addressed by simply adapting object queries on language embedding of categories per dataset. We design a detection hub to dynamically adapt queries on category embedding based on the different distributions of datasets. Unlike previous methods attempted to learn a joint embedding for all datasets, our adaptation method can utilize the language embedding as semantic centers for common categories, while learning the semantic bias towards specific categories belonging to different datasets to handle annotation differences and make up the domain gaps. These novel improvements enable us to end-to-end train a single detector on multiple datasets simultaneously to fully take their advantages. Further experiments on joint training on multiple datasets demonstrate the significant performance gains over separate individual fine-tuned detectors.
This paper researches the unexplored task-point cloud salient object detection (SOD). Differing from SOD for images, we find the attention shift of point clouds may provoke saliency conflict, i.e., an object paradoxically belongs to salient and non-salient categories. To eschew this issue, we present a novel view-dependent perspective of salient objects, reasonably reflecting the most eye-catching objects in point cloud scenarios. Following this formulation, we introduce PCSOD, the first dataset proposed for point cloud SOD consisting of 2,872 in-/out-door 3D views. The samples in our dataset are labeled with hierarchical annotations, e.g., super-/sub-class, bounding box, and segmentation map, which endows the brilliant generalizability and broad applicability of our dataset verifying various conjectures. To evidence the feasibility of our solution, we further contribute a baseline model and benchmark five representative models for a comprehensive comparison. The proposed model can effectively analyze irregular and unordered points for detecting salient objects. Thanks to incorporating the task-tailored designs, our method shows visible superiority over other baselines, producing more satisfactory results. Extensive experiments and discussions reveal the promising potential of this research field, paving the way for further study.
Most existing works on few-shot object detection (FSOD) focus on a setting where both pre-training and few-shot learning datasets are from a similar domain. However, few-shot algorithms are important in multiple domains; hence evaluation needs to reflect the broad applications. We propose a Multi-dOmain Few-Shot Object Detection (MoFSOD) benchmark consisting of 10 datasets from a wide range of domains to evaluate FSOD algorithms. We comprehensively analyze the impacts of freezing layers, different architectures, and different pre-training datasets on FSOD performance. Our empirical results show several key factors that have not been explored in previous works: 1) contrary to previous belief, on a multi-domain benchmark, fine-tuning (FT) is a strong baseline for FSOD, performing on par or better than the state-of-the-art (SOTA) algorithms; 2) utilizing FT as the baseline allows us to explore multiple architectures, and we found them to have a significant impact on down-stream few-shot tasks, even with similar pre-training performances; 3) by decoupling pre-training and few-shot learning, MoFSOD allows us to explore the impact of different pre-training datasets, and the right choice can boost the performance of the down-stream tasks significantly. Based on these findings, we list possible avenues of investigation for improving FSOD performance and propose two simple modifications to existing algorithms that lead to SOTA performance on the MoFSOD benchmark. The code is available at //github.com/amazon-research/few-shot-object-detection-benchmark.
Video object detection has been an important yet challenging topic in computer vision. Traditional methods mainly focus on designing the image-level or box-level feature propagation strategies to exploit temporal information. This paper argues that with a more effective and efficient feature propagation framework, video object detectors can gain improvement in terms of both accuracy and speed. For this purpose, this paper studies object-level feature propagation, and proposes an object query propagation (QueryProp) framework for high-performance video object detection. The proposed QueryProp contains two propagation strategies: 1) query propagation is performed from sparse key frames to dense non-key frames to reduce the redundant computation on non-key frames; 2) query propagation is performed from previous key frames to the current key frame to improve feature representation by temporal context modeling. To further facilitate query propagation, an adaptive propagation gate is designed to achieve flexible key frame selection. We conduct extensive experiments on the ImageNet VID dataset. QueryProp achieves comparable accuracy with state-of-the-art methods and strikes a decent accuracy/speed trade-off. Code is available at //github.com/hf1995/QueryProp.
Existing methods for anomaly detection based on memory-augmented autoencoder (AE) have the following drawbacks: (1) Establishing a memory bank requires additional memory space. (2) The fixed number of prototypes from subjective assumptions ignores the data feature differences and diversity. To overcome these drawbacks, we introduce DLAN-AC, a Dynamic Local Aggregation Network with Adaptive Clusterer, for anomaly detection. First, The proposed DLAN can automatically learn and aggregate high-level features from the AE to obtain more representative prototypes, while freeing up extra memory space. Second, The proposed AC can adaptively cluster video data to derive initial prototypes with prior information. In addition, we also propose a dynamic redundant clustering strategy (DRCS) to enable DLAN for automatically eliminating feature clusters that do not contribute to the construction of prototypes. Extensive experiments on benchmarks demonstrate that DLAN-AC outperforms most existing methods, validating the effectiveness of our method. Our code is publicly available at //github.com/Beyond-Zw/DLAN-AC.
Weakly-Supervised Object Detection (WSOD) and Localization (WSOL), i.e., detecting multiple and single instances with bounding boxes in an image using image-level labels, are long-standing and challenging tasks in the CV community. With the success of deep neural networks in object detection, both WSOD and WSOL have received unprecedented attention. Hundreds of WSOD and WSOL methods and numerous techniques have been proposed in the deep learning era. To this end, in this paper, we consider WSOL is a sub-task of WSOD and provide a comprehensive survey of the recent achievements of WSOD. Specifically, we firstly describe the formulation and setting of the WSOD, including the background, challenges, basic framework. Meanwhile, we summarize and analyze all advanced techniques and training tricks for improving detection performance. Then, we introduce the widely-used datasets and evaluation metrics of WSOD. Lastly, we discuss the future directions of WSOD. We believe that these summaries can help pave a way for future research on WSOD and WSOL.
Conventional methods for object detection typically require a substantial amount of training data and preparing such high-quality training data is very labor-intensive. In this paper, we propose a novel few-shot object detection network that aims at detecting objects of unseen categories with only a few annotated examples. Central to our method are our Attention-RPN, Multi-Relation Detector and Contrastive Training strategy, which exploit the similarity between the few shot support set and query set to detect novel objects while suppressing false detection in the background. To train our network, we contribute a new dataset that contains 1000 categories of various objects with high-quality annotations. To the best of our knowledge, this is one of the first datasets specifically designed for few-shot object detection. Once our few-shot network is trained, it can detect objects of unseen categories without further training or fine-tuning. Our method is general and has a wide range of potential applications. We produce a new state-of-the-art performance on different datasets in the few-shot setting. The dataset link is //github.com/fanq15/Few-Shot-Object-Detection-Dataset.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
Object detection is considered as one of the most challenging problems in computer vision, since it requires correct prediction of both classes and locations of objects in images. In this study, we define a more difficult scenario, namely zero-shot object detection (ZSD) where no visual training data is available for some of the target object classes. We present a novel approach to tackle this ZSD problem, where a convex combination of embeddings are used in conjunction with a detection framework. For evaluation of ZSD methods, we propose a simple dataset constructed from Fashion-MNIST images and also a custom zero-shot split for the Pascal VOC detection challenge. The experimental results suggest that our method yields promising results for ZSD.
We propose the idea of transferring common-sense knowledge from source categories to target categories for scalable object detection. In our setting, the training data for the source categories have bounding box annotations, while those for the target categories only have image-level annotations. Current state-of-the-art approaches focus on image-level visual or semantic similarity to adapt a detector trained on the source categories to the new target categories. In contrast, our key idea is to (i) use similarity not at image-level, but rather at region-level, as well as (ii) leverage richer common-sense (based on attribute, spatial, etc.,) to guide the algorithm towards learning the correct detections. We acquire such common-sense cues automatically from readily-available knowledge bases without any extra human effort. On the challenging MS COCO dataset, we find that using common-sense knowledge substantially improves detection performance over existing transfer-learning baselines.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.