Introduction: Characteristics of hemodynamics strongly affect the patency of arteriovenous fistula (AVF) in hemodialysis patients. Because of pressure balance changes among arteries after AVF construction, regurgitating flow occurs in some patients. Methods: Based on phase-contrast MRI measurements, flow types around the anastomotic site are classified to the three different types of splitting, merging, and one-way, where merging type incorporates regurgitating flow. We have performed computational simulations to analyze characteristic differences among these types. Results: In the merging type, a characteristic spiral flow is observed in AVF causing strong wall shear stress and large pressure drop, whereas the splitting type shows a smooth flow and gives a smaller pressure drop. The one-way case is intermediate between splitting and merging types. Conclusion: Regurgitation brings about high wall shear stress near the anastomotic site because of instabilities induced by merging phenomena, for which type careful follow-up examinations are regarded as necessary.
Recently, Physics-Informed Neural Networks (PINNs) have gained significant attention for their versatile interpolation capabilities in solving partial differential equations (PDEs). Despite their potential, the training can be computationally demanding, especially for intricate functions like wavefields. This is primarily due to the neural-based (learned) basis functions, biased toward low frequencies, as they are dominated by polynomial calculations, which are not inherently wavefield-friendly. In response, we propose an approach to enhance the efficiency and accuracy of neural network wavefield solutions by modeling them as linear combinations of Gabor basis functions that satisfy the wave equation. Specifically, for the Helmholtz equation, we augment the fully connected neural network model with an adaptable Gabor layer constituting the final hidden layer, employing a weighted summation of these Gabor neurons to compute the predictions (output). These weights/coefficients of the Gabor functions are learned from the previous hidden layers that include nonlinear activation functions. To ensure the Gabor layer's utilization across the model space, we incorporate a smaller auxiliary network to forecast the center of each Gabor function based on input coordinates. Realistic assessments showcase the efficacy of this novel implementation compared to the vanilla PINN, particularly in scenarios involving high-frequencies and realistic models that are often challenging for PINNs.
The accuracy of solving partial differential equations (PDEs) on coarse grids is greatly affected by the choice of discretization schemes. In this work, we propose to learn time integration schemes based on neural networks which satisfy three distinct sets of mathematical constraints, i.e., unconstrained, semi-constrained with the root condition, and fully-constrained with both root and consistency conditions. We focus on the learning of 3-step linear multistep methods, which we subsequently applied to solve three model PDEs, i.e., the one-dimensional heat equation, the one-dimensional wave equation, and the one-dimensional Burgers' equation. The results show that the prediction error of the learned fully-constrained scheme is close to that of the Runge-Kutta method and Adams-Bashforth method. Compared to the traditional methods, the learned unconstrained and semi-constrained schemes significantly reduce the prediction error on coarse grids. On a grid that is 4 times coarser than the reference grid, the mean square error shows a reduction of up to an order of magnitude for some of the heat equation cases, and a substantial improvement in phase prediction for the wave equation. On a 32 times coarser grid, the mean square error for the Burgers' equation can be reduced by up to 35% to 40%.
This work addresses the approximation of the mean curvature flow of thin structures for which classical phase field methods are not suitable. By thin structures we mean either structures of higher codimension, typically filaments, or surfaces (including non orientables surfaces) that are not boundaries of a set. We propose a novel approach which consists in plugging into the classical Allen--Cahn equation a penalization term localized around the skeleton of the evolving set. This ensures that a minimal thickness is preserved during the evolution process. The numerical efficacy of our approach is illustrated with accurate approximations of the evolution by mean curvature flow of filament structures. Furthermore, we show the seamless adaptability of our approach to compute numerical approximations of solutions to the Steiner and Plateau problems in three dimensions.
We consider two classes of natural stochastic processes on finite unlabeled graphs. These are Euclidean stochastic optimization algorithms on the adjacency matrix of weighted graphs and a modified version of the Metropolis MCMC algorithm on stochastic block models over unweighted graphs. In both cases we show that, as the size of the graph goes to infinity, the random trajectories of the stochastic processes converge to deterministic curves on the space of measure-valued graphons. Measure-valued graphons, introduced by Lov\'{a}sz and Szegedy in \cite{lovasz2010decorated}, are a refinement of the concept of graphons that can distinguish between two infinite exchangeable arrays that give rise to the same graphon limit. We introduce new metrics on this space which provide us with a natural notion of convergence for our limit theorems. This notion is equivalent to the convergence of infinite-exchangeable arrays. Under suitable assumptions and a specified time-scaling, the Metropolis chain admits a diffusion limit as the number of vertices go to infinity. We then demonstrate that, in an appropriately formulated zero-noise limit, the stochastic process of adjacency matrices of this diffusion converges to a deterministic gradient flow curve on the space of graphons introduced in\cite{Oh2023}. A novel feature of this approach is that it provides a precise exponential convergence rate for the Metropolis chain in a certain limiting regime. The connection between a natural Metropolis chain commonly used in exponential random graph models and gradient flows on graphons, to the best of our knowledge, is new in the literature as well.
This article proposes entropy stable discontinuous Galerkin schemes (DG) for two-fluid relativistic plasma flow equations. These equations couple the flow of relativistic fluids via electromagnetic quantities evolved using Maxwell's equations. The proposed schemes are based on the Gauss-Lobatto quadrature rule, which has the summation by parts (SBP) property. We exploit the structure of the equations having the flux with three independent parts coupled via nonlinear source terms. We design entropy stable DG schemes for each flux part, coupled with the fact that the source terms do not affect entropy, resulting in an entropy stable scheme for the complete system. The proposed schemes are then tested on various test problems in one and two dimensions to demonstrate their accuracy and stability.
Microring resonators (MRRs) are promising devices for time-delay photonic reservoir computing, but the impact of the different physical effects taking place in the MRRs on the reservoir computing performance is yet to be fully understood. We numerically analyze the impact of linear losses as well as thermo-optic and free-carrier effects relaxation times on the prediction error of the time-series task NARMA-10. We demonstrate the existence of three regions, defined by the input power and the frequency detuning between the optical source and the microring resonance, that reveal the cavity transition from linear to nonlinear regimes. One of these regions offers very low error in time-series prediction under relatively low input power and number of nodes while the other regions either lack nonlinearity or become unstable. This study provides insight into the design of the MRR and the optimization of its physical properties for improving the prediction performance of time-delay reservoir computing.
The paper introduces a geometrically unfitted finite element method for the numerical solution of the tangential Navier--Stokes equations posed on a passively evolving smooth closed surface embedded in $\mathbb{R}^3$. The discrete formulation employs finite difference and finite elements methods to handle evolution in time and variation in space, respectively. A complete numerical analysis of the method is presented, including stability, optimal order convergence, and quantification of the geometric errors. Results of numerical experiments are also provided.
The present work is concerned with the extension of modified potential operator splitting methods to specific classes of nonlinear evolution equations. The considered partial differential equations of Schr{\"o}dinger and parabolic type comprise the Laplacian, a potential acting as multiplication operator, and a cubic nonlinearity. Moreover, an invariance principle is deduced that has a significant impact on the efficient realisation of the resulting modified operator splitting methods for the Schr{\"o}dinger case.} Numerical illustrations for the time-dependent Gross--Pitaevskii equation in the physically most relevant case of three space dimensions and for its parabolic counterpart related to ground state and excited state computations confirm the benefits of the proposed fourth-order modified operator splitting method in comparison with standard splitting methods. The presented results are novel and of particular interest from both, a theoretical perspective to inspire future investigations of modified operator splitting methods for other classes of nonlinear evolution equations and a practical perspective to advance the reliable and efficient simulation of Gross--Pitaevskii systems in real and imaginary time.
This paper begins with a study of both the exact distribution and the asymptotic distribution of the empirical correlation of two independent AR(1) processes with Gaussian innovations. We proceed to develop rates of convergence for the distribution of the scaled empirical correlation %(i.e. the empirical correlation times the square root of the number of data points times a normalized constant) to the standard Gaussian distribution in both Wasserstein distance and in Kolmogorov distance. Given $n$ data points, we prove the convergence rate in Wasserstein distance is $n^{-1/2}$ and the convergence rate in Kolmogorov distance is $n^{-1/2} \sqrt{\ln n}$. We then compute rates of convergence of the scaled empirical correlation to the standard Gaussian distribution for two additional classes of AR(1) processes: (i) two AR(1) processes with correlated Gaussian increments and (ii) two independent AR(1) processes driven by white noise in the second Wiener chaos.
Obtaining continuously updated predictions is a major challenge for personalised medicine. Leveraging combinations of parametric regressions and machine learning approaches, the personalised online super learner (POSL) can achieve such dynamic and personalised predictions. We adapt POSL to predict a repeated continuous outcome dynamically and propose a new way to validate such personalised or dynamic prediction models. We illustrate its performance by predicting the convection volume of patients undergoing hemodiafiltration. POSL outperformed its candidate learners with respect to median absolute error, calibration-in-the-large, discrimination, and net benefit. We finally discuss the choices and challenges underlying the use of POSL.