亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We investigate how to enhance answer precision in frequently asked questions posed by distributed users using cloud-based Large Language Models (LLMs). Our study focuses on a typical situations where users ask similar queries that involve identical mathematical reasoning steps and problem-solving procedures. Due to the unsatisfactory accuracy of LLMs' zero-shot prompting with standalone questions, we propose to improve the distributed synonymous questions using Self-Consistency (SC) and Chain-of-Thought (CoT) techniques. Specifically, we first retrieve synonymous questions from a crowd-sourced database and create a federated question pool. We call these federated synonymous questions with the same or different parameters SP-questions or DP-questions, respectively. We refer to our methods as Fed-SP-SC and Fed-DP-CoT, which can generate significantly more accurate answers for all user queries without requiring sophisticated model-tuning. Through extensive experiments, we demonstrate that our proposed methods can significantly enhance question accuracy by fully exploring the synonymous nature of the questions and the consistency of the answers.

相關內容

機器學習系統設計系統評估標準

Sequential recommenders have been widely used in industry due to their strength in modeling user preferences. While these models excel at learning a user's positive interests, less attention has been paid to learning from negative user feedback. Negative user feedback is an important lever of user control, and comes with an expectation that recommenders should respond quickly and reduce similar recommendations to the user. However, negative feedback signals are often ignored in the training objective of sequential retrieval models, which primarily aim at predicting positive user interactions. In this work, we incorporate explicit and implicit negative user feedback into the training objective of sequential recommenders in the retrieval stage using a "not-to-recommend" loss function that optimizes for the log-likelihood of not recommending items with negative feedback. We demonstrate the effectiveness of this approach using live experiments on a large-scale industrial recommender system. Furthermore, we address a challenge in measuring recommender responsiveness to negative feedback by developing a counterfactual simulation framework to compare recommender responses between different user actions, showing improved responsiveness from the modeling change.

Federated learning enables multiple decentralized clients to learn collaboratively without sharing the local training data. However, the expensive annotation cost to acquire data labels on local clients remains an obstacle in utilizing local data. In this paper, we propose a federated active learning paradigm to efficiently learn a global model with limited annotation budget while protecting data privacy in a decentralized learning way. The main challenge faced by federated active learning is the mismatch between the active sampling goal of the global model on the server and that of the asynchronous local clients. This becomes even more significant when data is distributed non-IID across local clients. To address the aforementioned challenge, we propose Knowledge-Aware Federated Active Learning (KAFAL), which consists of Knowledge-Specialized Active Sampling (KSAS) and Knowledge-Compensatory Federated Update (KCFU). KSAS is a novel active sampling method tailored for the federated active learning problem. It deals with the mismatch challenge by sampling actively based on the discrepancies between local and global models. KSAS intensifies specialized knowledge in local clients, ensuring the sampled data to be informative for both the local clients and the global model. KCFU, in the meantime, deals with the client heterogeneity caused by limited data and non-IID data distributions. It compensates for each client's ability in weak classes by the assistance of the global model. Extensive experiments and analyses are conducted to show the superiority of KSAS over the state-of-the-art active learning methods and the efficiency of KCFU under the federated active learning framework.

PDDLStream solvers have recently emerged as viable solutions for Task and Motion Planning (TAMP) problems, extending PDDL to problems with continuous action spaces. Prior work has shown how PDDLStream problems can be reduced to a sequence of PDDL planning problems, which can then be solved using off-the-shelf planners. However, this approach can suffer from long runtimes. In this paper we propose LAZY, a solver for PDDLStream problems that maintains a single integrated search over action skeletons, which gets progressively more geometrically informed, as samples of possible motions are lazily drawn during motion planning. We explore how learned models of goal-directed policies and current motion sampling data can be incorporated in LAZY to adaptively guide the task planner. We show that this leads to significant speed-ups in the search for a feasible solution evaluated over unseen test environments of varying numbers of objects, goals, and initial conditions. We evaluate our TAMP approach by comparing to existing solvers for PDDLStream problems on a range of simulated 7DoF rearrangement/manipulation problems.

Existing FL-based approaches are based on the unrealistic assumption that the data on the client-side is fully annotated with ground truths. Furthermore, it is a great challenge how to improve the training efficiency while ensuring the detection accuracy in the highly heterogeneous and resource-constrained IoT networks. Meanwhile, the communication cost between clients and the server is also a problem that can not be ignored. Therefore, in this paper, we propose a Federated Semi-Supervised and Semi-Asynchronous (FedS3A) learning for anomaly detection in IoT networks. First, we consider a more realistic assumption that labeled data is only available at the server, and pseudo-labeling is utilized to implement federated semi-supervised learning, in which a dynamic weight of supervised learning is exploited to balance the supervised learning at the server and unsupervised learning at clients. Then, we propose a semi-asynchronous model update and staleness tolerant distribution scheme to achieve a trade-off between the round efficiency and detection accuracy. Meanwhile, the staleness of local models and the participation frequency of clients are considered to adjust their contributions to the global model. In addition, a group-based aggregation function is proposed to deal with the non-IID distribution of the data. Finally, the difference transmission based on the sparse matrix is adopted to reduce the communication cost. Extensive experimental results show that FedS3A can achieve greater than 98% accuracy even when the data is non-IID and is superior to the classic FL-based algorithms in terms of both detection performance and round efficiency, achieving a win-win situation. Meanwhile, FedS3A successfully reduces the communication cost by higher than 50%.

For vehicular metaverses, one of the ultimate user-centric goals is to optimize the immersive experience and Quality of Service (QoS) for users on board. Semantic Communication (SemCom) has been introduced as a revolutionary paradigm that significantly eases communication resource pressure for vehicular metaverse applications to achieve this goal. SemCom enables high-quality and ultra-efficient vehicular communication, even with explosively increasing data traffic among vehicles. In this article, we propose a hierarchical SemCom-enabled vehicular metaverses framework consisting of the global metaverse, local metaverses, SemCom module, and resource pool. The global and local metaverses are brand-new concepts from the metaverse's distribution standpoint. Considering the QoS of users, this article explores the potential security vulnerabilities of the proposed framework. To that purpose, this study highlights a specific security risk to the framework's SemCom module and offers a viable defense solution, so encouraging community researchers to focus more on vehicular metaverse security. Finally, we provide an overview of the open issues of secure SemCom in the vehicular metaverses, notably pointing out potential future research directions.

Efficient use of spectral resources will be an important aspect of converged access network deployment. This work analyzes the performance of variable bandwidth Analog Radio-over-Fiber signals transmitted in the unfilled spectral spaces of telecom-grade ROADM channels dedicated for coherent signals transmission over the OpenIreland testbed.

Understanding how language supports emotion inference remains a topic of debate in emotion science. The present study investigated whether language-derived emotion-concept knowledge would causally support emotion inference by manipulating the language-specific knowledge representations in large language models. Using the prompt technique, 14 attributes of emotion concepts were found to be represented by distinct artificial neuron populations. By manipulating these attribute-related neurons, the majority of the emotion inference tasks showed performance deterioration compared to random manipulations. The attribute-specific performance deterioration was related to the importance of different attributes in human mental space. Our findings provide causal evidence in support of a language-based mechanism for emotion inference and highlight the contributions of emotion-concept knowledge.

Sequential recommenders have made great strides in capturing a user's preferences. Nevertheless, the cold-start recommendation remains a fundamental challenge as they typically involve limited user-item interactions for personalization. Recently, gradient-based meta-learning approaches have emerged in the sequential recommendation field due to their fast adaptation and easy-to-integrate abilities. The meta-learning algorithms formulate the cold-start recommendation as a few-shot learning problem, where each user is represented as a task to be adapted. While meta-learning algorithms generally assume that task-wise samples are evenly distributed over classes or values, user-item interactions in real-world applications do not conform to such a distribution (e.g., watching favorite videos multiple times, leaving only positive ratings without any negative ones). Consequently, imbalanced user feedback, which accounts for the majority of task training data, may dominate the user adaptation process and prevent meta-learning algorithms from learning meaningful meta-knowledge for personalized recommendations. To alleviate this limitation, we propose a novel sequential recommendation framework based on gradient-based meta-learning that captures the imbalanced rating distribution of each user and computes adaptive loss for user-specific learning. Our work is the first to tackle the impact of imbalanced ratings in cold-start sequential recommendation scenarios. Through extensive experiments conducted on real-world datasets, we demonstrate the effectiveness of our framework.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

While existing machine learning models have achieved great success for sentiment classification, they typically do not explicitly capture sentiment-oriented word interaction, which can lead to poor results for fine-grained analysis at the snippet level (a phrase or sentence). Factorization Machine provides a possible approach to learning element-wise interaction for recommender systems, but they are not directly applicable to our task due to the inability to model contexts and word sequences. In this work, we develop two Position-aware Factorization Machines which consider word interaction, context and position information. Such information is jointly encoded in a set of sentiment-oriented word interaction vectors. Compared to traditional word embeddings, SWI vectors explicitly capture sentiment-oriented word interaction and simplify the parameter learning. Experimental results show that while they have comparable performance with state-of-the-art methods for document-level classification, they benefit the snippet/sentence-level sentiment analysis.

北京阿比特科技有限公司