Hardware-based Malware Detectors (HMDs) have shown promise in detecting malicious workloads. However, the current HMDs focus solely on the CPU core of a System-on-Chip (SoC) and, therefore, do not exploit the full potential of the hardware telemetry. In this paper, we propose XMD, an HMD that uses an expansive set of telemetry channels extracted from the different subsystems of SoC. XMD exploits the thread-level profiling power of the CPU-core telemetry, and the global profiling power of non-core telemetry channels, to achieve significantly better detection performance than currently used Hardware Performance Counter (HPC) based detectors. We leverage the concept of manifold hypothesis to analytically prove that adding non-core telemetry channels improves the separability of the benign and malware classes, resulting in performance gains. We train and evaluate XMD using hardware telemetries collected from 723 benign applications and 1033 malware samples on a commodity Android Operating System (OS)-based mobile device. XMD improves over currently used HPC-based detectors by 32.91% for the in-distribution test data. XMD achieves the best detection performance of 86.54% with a false positive rate of 2.9%, compared to the detection rate of 80%, offered by the best performing signature-based Anti-Virus(AV) on VirusTotal, on the same set of malware samples.
Recent studies have provided empirical evidence of the wide-ranging potential of Generative Pre-trained Transformer (GPT), a pretrained language model, in the field of natural language processing. GPT has been effectively employed as a decoder within state-of-the-art (SOTA) question answering systems, yielding exceptional performance across various tasks. However, the current research landscape concerning GPT's application in Vietnamese remains limited. This paper aims to address this gap by presenting an implementation of GPT-2 for community-based question answering specifically focused on COVID-19 related queries in Vietnamese. We introduce a novel approach by conducting a comparative analysis of different Transformers vs SOTA models in the community-based COVID-19 question answering dataset. The experimental findings demonstrate that the GPT-2 models exhibit highly promising outcomes, outperforming other SOTA models as well as previous community-based COVID-19 question answering models developed for Vietnamese.
As neural networks (NN) are deployed across diverse sectors, their energy demand correspondingly grows. While several prior works have focused on reducing energy consumption during training, the continuous operation of ML-powered systems leads to significant energy use during inference. This paper investigates how the configuration of on-device hardware-elements such as GPU, memory, and CPU frequency, often neglected in prior studies, affects energy consumption for NN inference with regular fine-tuning. We propose PolyThrottle, a solution that optimizes configurations across individual hardware components using Constrained Bayesian Optimization in an energy-conserving manner. Our empirical evaluation uncovers novel facets of the energy-performance equilibrium showing that we can save up to 36 percent of energy for popular models. We also validate that PolyThrottle can quickly converge towards near-optimal settings while satisfying application constraints.
In this work, we address the NER problem by splitting it into two logical sub-tasks: (1) Span Detection which simply extracts entity mention spans irrespective of entity type; (2) Span Classification which classifies the spans into their entity types. Further, we formulate both sub-tasks as question-answering (QA) problems and produce two leaner models which can be optimized separately for each sub-task. Experiments with four cross-domain datasets demonstrate that this two-step approach is both effective and time efficient. Our system, SplitNER outperforms baselines on OntoNotes5.0, WNUT17 and a cybersecurity dataset and gives on-par performance on BioNLP13CG. In all cases, it achieves a significant reduction in training time compared to its QA baseline counterpart. The effectiveness of our system stems from fine-tuning the BERT model twice, separately for span detection and classification. The source code can be found at //github.com/c3sr/split-ner.
Denoising diffusion probabilistic models (DDPMs) have shown promising performance for speech synthesis. However, a large number of iterative steps are required to achieve high sample quality, which restricts the inference speed. Maintaining sample quality while increasing sampling speed has become a challenging task. In this paper, we propose a "Co"nsistency "Mo"del-based "Speech" synthesis method, CoMoSpeech, which achieve speech synthesis through a single diffusion sampling step while achieving high audio quality. The consistency constraint is applied to distill a consistency model from a well-designed diffusion-based teacher model, which ultimately yields superior performances in the distilled CoMoSpeech. Our experiments show that by generating audio recordings by a single sampling step, the CoMoSpeech achieves an inference speed more than 150 times faster than real-time on a single NVIDIA A100 GPU, which is comparable to FastSpeech2, making diffusion-sampling based speech synthesis truly practical. Meanwhile, objective and subjective evaluations on text-to-speech and singing voice synthesis show that the proposed teacher models yield the best audio quality, and the one-step sampling based CoMoSpeech achieves the best inference speed with better or comparable audio quality to other conventional multi-step diffusion model baselines. Audio samples are available at //comospeech.github.io/.
Equipped with Chain-of-Thought (CoT), Large language models (LLMs) have shown impressive reasoning ability in various downstream tasks. Even so, suffering from hallucinations and the inability to access external knowledge, LLMs often come with incorrect or unfaithful intermediate reasoning steps, especially in the context of answering knowledge-intensive tasks such as KBQA. To alleviate this issue, we propose a framework called Knowledge-Driven Chain-of-Thought (KD-CoT) to verify and modify reasoning traces in CoT via interaction with external knowledge, and thus overcome the hallucinations and error propagation. Concretely, we formulate the CoT rationale process of LLMs into a structured multi-round QA format. In each round, LLMs interact with a QA system that retrieves external knowledge and produce faithful reasoning traces based on retrieved precise answers. The structured CoT reasoning of LLMs is facilitated by our developed KBQA CoT collection, which serves as in-context learning demonstrations and can also be utilized as feedback augmentation to train a robust retriever. Extensive experiments on WebQSP and ComplexWebQuestion datasets demonstrate the effectiveness of proposed KD-CoT in task-solving reasoning generation, which outperforms the vanilla CoT ICL with an absolute success rate of 8.0% and 5.1%. Furthermore, our proposed feedback-augmented retriever outperforms the state-of-the-art baselines for retrieving knowledge, achieving significant improvement in Hit and recall performance. Our code and data are released on //github.com/AdelWang/KD-CoT/tree/main.
Recently, Meta-Black-Box Optimization with Reinforcement Learning (MetaBBO-RL) has showcased the power of leveraging RL at the meta-level to mitigate manual fine-tuning of low-level black-box optimizers. However, this field is hindered by the lack of a unified benchmark. To fill this gap, we introduce MetaBox, the first benchmark platform expressly tailored for developing and evaluating MetaBBO-RL methods. MetaBox offers a flexible algorithmic template that allows users to effortlessly implement their unique designs within the platform. Moreover, it provides a broad spectrum of over 300 problem instances, collected from synthetic to realistic scenarios, and an extensive library of 19 baseline methods, including both traditional black-box optimizers and recent MetaBBO-RL methods. Besides, MetaBox introduces three standardized performance metrics, enabling a more thorough assessment of the methods. In a bid to illustrate the utility of MetaBox for facilitating rigorous evaluation and in-depth analysis, we carry out a wide-ranging benchmarking study on existing MetaBBO-RL methods. Our MetaBox is open-source and accessible at: //github.com/GMC-DRL/MetaBox.
In the burgeoning ecosystem of Internet of Things, multivariate time series (MTS) data has become ubiquitous, highlighting the fundamental role of time series forecasting across numerous applications. The crucial challenge of long-term MTS forecasting requires adept models capable of capturing both intra- and inter-series dependencies. Recent advancements in deep learning, notably Transformers, have shown promise. However, many prevailing methods either marginalize inter-series dependencies or overlook them entirely. To bridge this gap, this paper introduces a novel series-aware framework, explicitly designed to emphasize the significance of such dependencies. At the heart of this framework lies our specific implementation: the SageFormer. As a Series-aware Graph-enhanced Transformer model, SageFormer proficiently discerns and models the intricate relationships between series using graph structures. Beyond capturing diverse temporal patterns, it also curtails redundant information across series. Notably, the series-aware framework seamlessly integrates with existing Transformer-based models, enriching their ability to comprehend inter-series relationships. Extensive experiments on real-world and synthetic datasets validate the superior performance of SageFormer against contemporary state-of-the-art approaches.
Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.
Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.
In Multi-Label Text Classification (MLTC), one sample can belong to more than one class. It is observed that most MLTC tasks, there are dependencies or correlations among labels. Existing methods tend to ignore the relationship among labels. In this paper, a graph attention network-based model is proposed to capture the attentive dependency structure among the labels. The graph attention network uses a feature matrix and a correlation matrix to capture and explore the crucial dependencies between the labels and generate classifiers for the task. The generated classifiers are applied to sentence feature vectors obtained from the text feature extraction network (BiLSTM) to enable end-to-end training. Attention allows the system to assign different weights to neighbor nodes per label, thus allowing it to learn the dependencies among labels implicitly. The results of the proposed model are validated on five real-world MLTC datasets. The proposed model achieves similar or better performance compared to the previous state-of-the-art models.