亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent works have demonstrated a double descent phenomenon in over-parameterized learning. Although this phenomenon has been investigated by recent works, it has not been fully understood in theory. In this paper, we investigate the multiple descent phenomenon in a class of multi-component prediction models. We first consider a ''double random feature model'' (DRFM) concatenating two types of random features, and study the excess risk achieved by the DRFM in ridge regression. We calculate the precise limit of the excess risk under the high dimensional framework where the training sample size, the dimension of data, and the dimension of random features tend to infinity proportionally. Based on the calculation, we further theoretically demonstrate that the risk curves of DRFMs can exhibit triple descent. We then provide a thorough experimental study to verify our theory. At last, we extend our study to the ''multiple random feature model'' (MRFM), and show that MRFMs ensembling $K$ types of random features may exhibit $(K+1)$-fold descent. Our analysis points out that risk curves with a specific number of descent generally exist in learning multi-component prediction models.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Performer · 歸納偏好 · 情景 · MoDELS ·
2023 年 11 月 24 日

Most applications of machine learning to classification assume a closed set of balanced classes. This is at odds with the real world, where class occurrence statistics often follow a long-tailed power-law distribution and it is unlikely that all classes are seen in a single sample. Nonparametric Bayesian models naturally capture this phenomenon, but have significant practical barriers to widespread adoption, namely implementation complexity and computational inefficiency. To address this, we present a method for extracting the inductive bias from a nonparametric Bayesian model and transferring it to an artificial neural network. By simulating data with a nonparametric Bayesian prior, we can metalearn a sequence model that performs inference over an unlimited set of classes. After training, this "neural circuit" has distilled the corresponding inductive bias and can successfully perform sequential inference over an open set of classes. Our experimental results show that the metalearned neural circuit achieves comparable or better performance than particle filter-based methods for inference in these models while being faster and simpler to use than methods that explicitly incorporate Bayesian nonparametric inference.

We are interested in testing properties of distributions with systematically mislabeled samples. Our goal is to make decisions about unknown probability distributions, using a sample that has been collected by a confused collector, such as a machine-learning classifier that has not learned to distinguish all elements of the domain. The confused collector holds an unknown clustering of the domain and an input distribution $\mu$, and provides two oracles: a sample oracle which produces a sample from $\mu$ that has been labeled according to the clustering; and a label-query oracle which returns the label of a query point $x$ according to the clustering. Our first set of results shows that identity, uniformity, and equivalence of distributions can be tested efficiently, under the earth-mover distance, with remarkably weak conditions on the confused collector, even when the unknown clustering is adversarial. This requires defining a variant of the distribution testing task (inspired by the recent testable learning framework of Rubinfeld & Vasilyan), where the algorithm should test a joint property of the distribution and its clustering. As an example, we get efficient testers when the distribution tester is allowed to reject if it detects that the confused collector clustering is "far" from being a decision tree. The second set of results shows that we can sometimes do significantly better when the clustering is random instead of adversarial. For certain one-dimensional random clusterings, we show that uniformity can be tested under the TV distance using $\widetilde O\left(\frac{\sqrt n}{\rho^{3/2} \epsilon^2}\right)$ samples and zero queries, where $\rho \in (0,1]$ controls the "resolution" of the clustering. We improve this to $O\left(\frac{\sqrt n}{\rho \epsilon^2}\right)$ when queries are allowed.

Federated learning (FL) is a popular privacy-preserving distributed training scheme, where multiple devices collaborate to train machine learning models by uploading local model updates. To improve communication efficiency, over-the-air computation (AirComp) has been applied to FL, which leverages analog modulation to harness the superposition property of radio waves such that numerous devices can upload their model updates concurrently for aggregation. However, the uplink channel noise incurs considerable model aggregation distortion, which is critically determined by the device scheduling and compromises the learned model performance. In this paper, we propose a probabilistic device scheduling framework for over-the-air FL, named PO-FL, to mitigate the negative impact of channel noise, where each device is scheduled according to a certain probability and its model update is reweighted using this probability in aggregation. We prove the unbiasedness of this aggregation scheme and demonstrate the convergence of PO-FL on both convex and non-convex loss functions. Our convergence bounds unveil that the device scheduling affects the learning performance through the communication distortion and global update variance. Based on the convergence analysis, we further develop a channel and gradient-importance aware algorithm to optimize the device scheduling probabilities in PO-FL. Extensive simulation results show that the proposed PO-FL framework with channel and gradient-importance awareness achieves faster convergence and produces better models than baseline methods.

The Frank-Wolfe method has become increasingly useful in statistical and machine learning applications, due to the structure-inducing properties of the iterates, and especially in settings where linear minimization over the feasible set is more computationally efficient than projection. In the setting of Empirical Risk Minimization -- one of the fundamental optimization problems in statistical and machine learning -- the computational effectiveness of Frank-Wolfe methods typically grows linearly in the number of data observations $n$. This is in stark contrast to the case for typical stochastic projection methods. In order to reduce this dependence on $n$, we look to second-order smoothness of typical smooth loss functions (least squares loss and logistic loss, for example) and we propose amending the Frank-Wolfe method with Taylor series-approximated gradients, including variants for both deterministic and stochastic settings. Compared with current state-of-the-art methods in the regime where the optimality tolerance $\varepsilon$ is sufficiently small, our methods are able to simultaneously reduce the dependence on large $n$ while obtaining optimal convergence rates of Frank-Wolfe methods, in both the convex and non-convex settings. We also propose a novel adaptive step-size approach for which we have computational guarantees. Last of all, we present computational experiments which show that our methods exhibit very significant speed-ups over existing methods on real-world datasets for both convex and non-convex binary classification problems.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

The rapid recent progress in machine learning (ML) has raised a number of scientific questions that challenge the longstanding dogma of the field. One of the most important riddles is the good empirical generalization of overparameterized models. Overparameterized models are excessively complex with respect to the size of the training dataset, which results in them perfectly fitting (i.e., interpolating) the training data, which is usually noisy. Such interpolation of noisy data is traditionally associated with detrimental overfitting, and yet a wide range of interpolating models -- from simple linear models to deep neural networks -- have recently been observed to generalize extremely well on fresh test data. Indeed, the recently discovered double descent phenomenon has revealed that highly overparameterized models often improve over the best underparameterized model in test performance. Understanding learning in this overparameterized regime requires new theory and foundational empirical studies, even for the simplest case of the linear model. The underpinnings of this understanding have been laid in very recent analyses of overparameterized linear regression and related statistical learning tasks, which resulted in precise analytic characterizations of double descent. This paper provides a succinct overview of this emerging theory of overparameterized ML (henceforth abbreviated as TOPML) that explains these recent findings through a statistical signal processing perspective. We emphasize the unique aspects that define the TOPML research area as a subfield of modern ML theory and outline interesting open questions that remain.

Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.

Textual entailment is a fundamental task in natural language processing. Most approaches for solving the problem use only the textual content present in training data. A few approaches have shown that information from external knowledge sources like knowledge graphs (KGs) can add value, in addition to the textual content, by providing background knowledge that may be critical for a task. However, the proposed models do not fully exploit the information in the usually large and noisy KGs, and it is not clear how it can be effectively encoded to be useful for entailment. We present an approach that complements text-based entailment models with information from KGs by (1) using Personalized PageR- ank to generate contextual subgraphs with reduced noise and (2) encoding these subgraphs using graph convolutional networks to capture KG structure. Our technique extends the capability of text models exploiting structural and semantic information found in KGs. We evaluate our approach on multiple textual entailment datasets and show that the use of external knowledge helps improve prediction accuracy. This is particularly evident in the challenging BreakingNLI dataset, where we see an absolute improvement of 5-20% over multiple text-based entailment models.

It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司