亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce the Cambridge Law Corpus (CLC), a dataset for legal AI research. It consists of over 250 000 court cases from the UK. Most cases are from the 21st century, but the corpus includes cases as old as the 16th century. This paper presents the first release of the corpus, containing the raw text and meta-data. Together with the corpus, we provide annotations on case outcomes for 638 cases, done by legal experts. Using our annotated data, we have trained and evaluated case outcome extraction with GPT-3, GPT-4 and RoBERTa models to provide benchmarks. We include an extensive legal and ethical discussion to address the potentially sensitive nature of this material. As a consequence, the corpus will only be released for research purposes under certain restrictions.

相關內容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系統編譯器、體系結構和綜合國際會議。 Publisher:ACM。 SIT:

We study the Constrained Convex Markov Decision Process (MDP), where the goal is to minimize a convex functional of the visitation measure, subject to a convex constraint. Designing algorithms for a constrained convex MDP faces several challenges, including (1) handling the large state space, (2) managing the exploration/exploitation tradeoff, and (3) solving the constrained optimization where the objective and the constraint are both nonlinear functions of the visitation measure. In this work, we present a model-based algorithm, Variational Primal-Dual Policy Optimization (VPDPO), in which Lagrangian and Fenchel duality are implemented to reformulate the original constrained problem into an unconstrained primal-dual optimization. Moreover, the primal variables are updated by model-based value iteration following the principle of Optimism in the Face of Uncertainty (OFU), while the dual variables are updated by gradient ascent. Moreover, by embedding the visitation measure into a finite-dimensional space, we can handle large state spaces by incorporating function approximation. Two notable examples are (1) Kernelized Nonlinear Regulators and (2) Low-rank MDPs. We prove that with an optimistic planning oracle, our algorithm achieves sublinear regret and constraint violation in both cases and can attain the globally optimal policy of the original constrained problem.

Despite significant strides in multimodal tasks, Multimodal Large Language Models (MLLMs) are plagued by the critical issue of hallucination. The reliable detection of such hallucinations in MLLMs has, therefore, become a vital aspect of model evaluation and the safeguarding of practical application deployment. Prior research in this domain has been constrained by a narrow focus on singular tasks, an inadequate range of hallucination categories addressed, and a lack of detailed granularity. In response to these challenges, our work expands the investigative horizons of hallucination detection. We present a novel meta-evaluation benchmark, MHaluBench, meticulously crafted to facilitate the evaluation of advancements in hallucination detection methods. Additionally, we unveil a novel unified multimodal hallucination detection framework, UNIHD, which leverages a suite of auxiliary tools to validate the occurrence of hallucinations robustly. We demonstrate the effectiveness of UNIHD through meticulous evaluation and comprehensive analysis. We also provide strategic insights on the application of specific tools for addressing various categories of hallucinations.

As concerns over data privacy intensify, unlearning in Graph Neural Networks (GNNs) has emerged as a prominent research frontier in academia. This concept is pivotal in enforcing the right to be forgotten, which entails the selective removal of specific data from trained GNNs upon user request. Our research focuses on edge unlearning, a process of particular relevance to real-world applications, owing to its widespread applicability. Current state-of-the-art approaches like GNNDelete can eliminate the influence of specific edges, yet our research has revealed a critical limitation in these approaches, termed over-forgetting. It occurs when the unlearning process inadvertently removes excessive information beyond specific data, leading to a significant decline in prediction accuracy for the remaining edges. To address this issue, we have identified the loss functions of GNNDelete as the primary source of the over-forgetting phenomenon. Furthermore, our analysis also suggests that loss functions may not be essential for effective edge unlearning. Building on these insights, we have simplified GNNDelete to develop Unlink-to-Unlearn (UtU), a novel method that facilitates unlearning exclusively through unlinking the forget edges from graph structure. Our extensive experiments demonstrate that UtU delivers privacy protection on par with that of a retrained model while preserving high accuracy in downstream tasks. Specifically, UtU upholds over 97.3% of the retrained model's privacy protection capabilities and 99.8% of its link prediction accuracy. Meanwhile, UtU requires only constant computational demands, underscoring its advantage as a highly lightweight and practical edge unlearning solution.

Understanding treatment heterogeneity is crucial for reliable decision-making in treatment evaluation and selection. While the conditional average treatment effect (CATE) is commonly used to capture treatment heterogeneity induced by covariates and design individualized treatment policies, it remains an averaging metric within subpopulations. This limitation prevents it from unveiling individual-level risks, potentially leading to misleading results. This article addresses this gap by examining individual risk for binary outcomes, specifically focusing on the fraction negatively affected (FNA) conditional on covariates -- a metric assessing the percentage of individuals experiencing worse outcomes with treatment compared to control. Under the strong ignorability assumption, FNA is unidentifiable, and we find that previous bounds are wide and practically unattainable except in certain degenerate cases. By introducing a plausible positive correlation assumption for the potential outcomes, we obtain significantly improved bounds compared to previous studies. We show that even with a positive and statistically significant CATE, the lower bound on FNA can be positive, i.e., in the best-case scenario many units will be harmed if receiving treatment. We establish a nonparametric sensitivity analysis framework for FNA using the Pearson correlation coefficient as the sensitivity parameter, thereby exploring the relationships among the correlation coefficient, FNA, and CATE. We also present a practical and tractable method for selecting the range of correlation coefficients. Furthermore, we propose flexible estimators for refined FNA bounds and prove their consistency and asymptotic normality.

Traditional tracking-by-detection systems typically employ Kalman filters (KF) for state estimation. However, the KF requires domain-specific design choices and it is ill-suited to handling non-linear motion patterns. To address these limitations, we propose two innovative data-driven filtering methods. Our first method employs a Bayesian filter with a trainable motion model to predict an object's future location and combines its predictions with observations gained from an object detector to enhance bounding box prediction accuracy. Moreover, it dispenses with most domain-specific design choices characteristic of the KF. The second method, an end-to-end trainable filter, goes a step further by learning to correct detector errors, further minimizing the need for domain expertise. Additionally, we introduce a range of motion model architectures based on Recurrent Neural Networks, Neural Ordinary Differential Equations, and Conditional Neural Processes, that are combined with the proposed filtering methods. Our extensive evaluation across multiple datasets demonstrates that our proposed filters outperform the traditional KF in object tracking, especially in the case of non-linear motion patterns -- the use case our filters are best suited to. We also conduct noise robustness analysis of our filters with convincing positive results. We further propose a new cost function for associating observations with tracks. Our tracker, which incorporates this new association cost with our proposed filters, outperforms the conventional SORT method and other motion-based trackers in multi-object tracking according to multiple metrics on motion-rich DanceTrack and SportsMOT datasets.

Graph Neural Networks (GNNs) are widely used for analyzing graph-structured data. Most GNN methods are highly sensitive to the quality of graph structures and usually require a perfect graph structure for learning informative embeddings. However, the pervasiveness of noise in graphs necessitates learning robust representations for real-world problems. To improve the robustness of GNN models, many studies have been proposed around the central concept of Graph Structure Learning (GSL), which aims to jointly learn an optimized graph structure and corresponding representations. Towards this end, in the presented survey, we broadly review recent progress of GSL methods for learning robust representations. Specifically, we first formulate a general paradigm of GSL, and then review state-of-the-art methods classified by how they model graph structures, followed by applications that incorporate the idea of GSL in other graph tasks. Finally, we point out some issues in current studies and discuss future directions.

Object detectors usually achieve promising results with the supervision of complete instance annotations. However, their performance is far from satisfactory with sparse instance annotations. Most existing methods for sparsely annotated object detection either re-weight the loss of hard negative samples or convert the unlabeled instances into ignored regions to reduce the interference of false negatives. We argue that these strategies are insufficient since they can at most alleviate the negative effect caused by missing annotations. In this paper, we propose a simple but effective mechanism, called Co-mining, for sparsely annotated object detection. In our Co-mining, two branches of a Siamese network predict the pseudo-label sets for each other. To enhance multi-view learning and better mine unlabeled instances, the original image and corresponding augmented image are used as the inputs of two branches of the Siamese network, respectively. Co-mining can serve as a general training mechanism applied to most of modern object detectors. Experiments are performed on MS COCO dataset with three different sparsely annotated settings using two typical frameworks: anchor-based detector RetinaNet and anchor-free detector FCOS. Experimental results show that our Co-mining with RetinaNet achieves 1.4%~2.1% improvements compared with different baselines and surpasses existing methods under the same sparsely annotated setting.

This paper surveys the field of transfer learning in the problem setting of Reinforcement Learning (RL). RL has been the key solution to sequential decision-making problems. Along with the fast advance of RL in various domains. including robotics and game-playing, transfer learning arises as an important technique to assist RL by leveraging and transferring external expertise to boost the learning process. In this survey, we review the central issues of transfer learning in the RL domain, providing a systematic categorization of its state-of-the-art techniques. We analyze their goals, methodologies, applications, and the RL frameworks under which these transfer learning techniques would be approachable. We discuss the relationship between transfer learning and other relevant topics from an RL perspective and also explore the potential challenges as well as future development directions for transfer learning in RL.

ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.

We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.

北京阿比特科技有限公司