亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of finding second-order stationary points of heterogeneous federated learning (FL). Previous works in FL mostly focus on first-order convergence guarantees, which do not rule out the scenario of unstable saddle points. Meanwhile, it is a key bottleneck of FL to achieve communication efficiency without compensating the learning accuracy, especially when local data are highly heterogeneous across different clients. Given this, we propose a novel algorithm Power-EF that only communicates compressed information via a novel error-feedback scheme. To our knowledge, Power-EF is the first distributed and compressed SGD algorithm that provably escapes saddle points in heterogeneous FL without any data homogeneity assumptions. In particular, Power-EF improves to second-order stationary points after visiting first-order (possibly saddle) points, using additional gradient queries and communication rounds only of almost the same order required by first-order convergence, and the convergence rate exhibits a linear speedup in terms of the number of workers. Our theory improves/recovers previous results, while extending to much more tolerant settings on the local data. Numerical experiments are provided to complement the theory.

相關內容

在數學中,鞍點或極大極小點是函數圖形表面上的一點,其正交方向上的斜率(導數)都為零,但它不是函數的局部極值。鞍點是在某一軸向(峰值之間)有一個相對最小的臨界點,在交叉軸上有一個相對最大的臨界點。

We study bias and discrimination in the context of Bumble, an online dating platform in India. Drawing on research in AI fairness and inclusion studies we analyze algorithmic bias and their propensity to reproduce bias. We conducted an experiment to identify and address the presence of bias in the matching algorithms Bumble pushes to its users in the form of profiles for potential dates in the real world. Dating apps like Bumble utilize algorithms that learn from user data to make recommendations. Even if the algorithm does not have intentions or consciousness, it is a system created and maintained by humans. We attribute moral agency of such systems to be compositely derived from algorithmic mediations, the design and utilization of these platforms. Developers, designers, and operators of dating platforms thus have a moral obligation to mitigate biases in the algorithms to create inclusive platforms that affirm diverse social identities.

We introduce VL2NL, a Large Language Model (LLM) framework that generates rich and diverse NL datasets using only Vega-Lite specifications as input, thereby streamlining the development of Natural Language Interfaces (NLIs) for data visualization. To synthesize relevant chart semantics accurately and enhance syntactic diversity in each NL dataset, we leverage 1) a guided discovery incorporated into prompting so that LLMs can steer themselves to create faithful NL datasets in a self-directed manner; 2) a score-based paraphrasing to augment NL syntax along with four language axes. We also present a new collection of 1,981 real-world Vega-Lite specifications that have increased diversity and complexity than existing chart collections. When tested on our chart collection, VL2NL extracted chart semantics and generated L1/L2 captions with 89.4% and 76.0% accuracy, respectively. It also demonstrated generating and paraphrasing utterances and questions with greater diversity compared to the benchmarks. Last, we discuss how our NL datasets and framework can be utilized in real-world scenarios. The codes and chart collection are available at //github.com/hyungkwonko/chart-llm.

This work investigates large language models (LLMs) as teachable agents for learning by teaching (LBT). LBT with teachable agents helps learners identify knowledge gaps and discover new knowledge. However, teachable agents require expensive programming of subject-specific knowledge. While LLMs as teachable agents can reduce the cost, LLMs' expansive knowledge as tutees discourages learners from teaching. We propose a prompting pipeline that restrains LLMs' knowledge and makes them initiate "why" and "how" questions for effective knowledge-building. We combined these techniques into TeachYou, an LBT environment for algorithm learning, and AlgoBo, an LLM-based tutee chatbot that can simulate misconceptions and unawareness prescribed in its knowledge state. Our technical evaluation confirmed that our prompting pipeline can effectively configure AlgoBo's problem-solving performance. Through a between-subject study with 40 algorithm novices, we also observed that AlgoBo's questions led to knowledge-dense conversations (effect size=0.71). Lastly, we discuss design implications, cost-efficiency, and personalization of LLM-based teachable agents.

We propose a novel data-driven approach to allocate transmit power for federated learning (FL) over interference-limited wireless networks. The proposed method is useful in challenging scenarios where the wireless channel is changing during the FL training process and when the training data are not independent and identically distributed (non-i.i.d.) on the local devices. Intuitively, the power policy is designed to optimize the information received at the server end during the FL process under communication constraints. Ultimately, our goal is to improve the accuracy and efficiency of the global FL model being trained. The proposed power allocation policy is parameterized using graph convolutional networks (GCNs), and the associated constrained optimization problem is solved through a primal-dual (PD) algorithm. Theoretically, we show that the formulated problem has a zero duality gap and, once the power policy is parameterized, optimality depends on how expressive this parameterization is. Numerically, we demonstrate that the proposed method outperforms existing baselines under different wireless channel settings and varying degrees of data heterogeneity.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

When learning tasks over time, artificial neural networks suffer from a problem known as Catastrophic Forgetting (CF). This happens when the weights of a network are overwritten during the training of a new task causing forgetting of old information. To address this issue, we propose MetA Reusable Knowledge or MARK, a new method that fosters weight reusability instead of overwriting when learning a new task. Specifically, MARK keeps a set of shared weights among tasks. We envision these shared weights as a common Knowledge Base (KB) that is not only used to learn new tasks, but also enriched with new knowledge as the model learns new tasks. Key components behind MARK are two-fold. On the one hand, a metalearning approach provides the key mechanism to incrementally enrich the KB with new knowledge and to foster weight reusability among tasks. On the other hand, a set of trainable masks provides the key mechanism to selectively choose from the KB relevant weights to solve each task. By using MARK, we achieve state of the art results in several popular benchmarks, surpassing the best performing methods in terms of average accuracy by over 10% on the 20-Split-MiniImageNet dataset, while achieving almost zero forgetfulness using 55% of the number of parameters. Furthermore, an ablation study provides evidence that, indeed, MARK is learning reusable knowledge that is selectively used by each task.

We study the problem of incorporating prior knowledge into a deep Transformer-based model,i.e.,Bidirectional Encoder Representations from Transformers (BERT), to enhance its performance on semantic textual matching tasks. By probing and analyzing what BERT has already known when solving this task, we obtain better understanding of what task-specific knowledge BERT needs the most and where it is most needed. The analysis further motivates us to take a different approach than most existing works. Instead of using prior knowledge to create a new training task for fine-tuning BERT, we directly inject knowledge into BERT's multi-head attention mechanism. This leads us to a simple yet effective approach that enjoys fast training stage as it saves the model from training on additional data or tasks other than the main task. Extensive experiments demonstrate that the proposed knowledge-enhanced BERT is able to consistently improve semantic textual matching performance over the original BERT model, and the performance benefit is most salient when training data is scarce.

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

With the rapid growth of knowledge bases (KBs), question answering over knowledge base, a.k.a. KBQA has drawn huge attention in recent years. Most of the existing KBQA methods follow so called encoder-compare framework. They map the question and the KB facts to a common embedding space, in which the similarity between the question vector and the fact vectors can be conveniently computed. This, however, inevitably loses original words interaction information. To preserve more original information, we propose an attentive recurrent neural network with similarity matrix based convolutional neural network (AR-SMCNN) model, which is able to capture comprehensive hierarchical information utilizing the advantages of both RNN and CNN. We use RNN to capture semantic-level correlation by its sequential modeling nature, and use an attention mechanism to keep track of the entities and relations simultaneously. Meanwhile, we use a similarity matrix based CNN with two-directions pooling to extract literal-level words interaction matching utilizing CNNs strength of modeling spatial correlation among data. Moreover, we have developed a new heuristic extension method for entity detection, which significantly decreases the effect of noise. Our method has outperformed the state-of-the-arts on SimpleQuestion benchmark in both accuracy and efficiency.

北京阿比特科技有限公司