亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Confounding remains one of the major challenges to causal inference with observational data. This problem is paramount in medicine, where we would like to answer causal questions from large observational datasets like electronic health records (EHRs) and administrative claims. Modern medical data typically contain tens of thousands of covariates. Such a large set carries hope that many of the confounders are directly measured, and further hope that others are indirectly measured through their correlation with measured covariates. How can we exploit these large sets of covariates for causal inference? To help answer this question, this paper examines the performance of the large-scale propensity score (LSPS) approach on causal analysis of medical data. We demonstrate that LSPS may adjust for indirectly measured confounders by including tens of thousands of covariates that may be correlated with them. We present conditions under which LSPS removes bias due to indirectly measured confounders, and we show that LSPS may avoid bias when inadvertently adjusting for variables (like colliders) that otherwise can induce bias. We demonstrate the performance of LSPS with both simulated medical data and real medical data.

相關內容

The ability to dynamically adjust the computational load of neural models during inference is crucial for on-device processing scenarios characterised by limited and time-varying computational resources. A promising solution is presented by early-exit architectures, in which additional exit branches are appended to intermediate layers of the encoder. In self-attention models for automatic speech recognition (ASR), early-exit architectures enable the development of dynamic models capable of adapting their size and architecture to varying levels of computational resources and ASR performance demands. Previous research on early-exiting ASR models has relied on pre-trained self-supervised models, fine-tuned with an early-exit loss. In this paper, we undertake an experimental comparison between fine-tuning pre-trained backbones and training models from scratch with the early-exiting objective. Experiments conducted on public datasets reveal that early-exit models trained from scratch not only preserve performance when using fewer encoder layers but also exhibit enhanced task accuracy compared to single-exit or pre-trained models. Furthermore, we explore an exit selection strategy grounded in posterior probabilities as an alternative to the conventional frame-based entropy approach. Results provide insights into the training dynamics of early-exit architectures for ASR models, particularly the efficacy of training strategies and exit selection methods.

Optimal solutions of combinatorial optimization problems can be sensitive to changes in the cost of one or more elements. Single and set tolerances measure the largest / smallest possible change such that the current solution remains optimal and other solutions become non-optimal for cost changes in one or more elements, respectively. The current definition only applies to subsets of elements. In this paper, we broaden the definition to all elements, for single tolerances, and to all subsets of elements for set tolerances, while proving that key computational and theoretical properties still apply to the new definitions.

Vascular segmentation represents a crucial clinical task, yet its automation remains challenging. Because of the recent strides in deep learning, vesselness filters, which can significantly aid the learning process, have been overlooked. This study introduces an innovative filter fusion method crafted to amplify the effectiveness of vessel segmentation models. Our investigation seeks to establish the merits of a filter-based learning approach through a comparative analysis. Specifically, we contrast the performance of a U-Net model trained on CT images with an identical U-Net configuration trained on vesselness hyper-volumes using matching parameters. Our findings, based on two vascular datasets, highlight improved segmentations, especially for small vessels, when the model's learning is exposed to vessel-enhanced inputs.

In observational studies, covariates with substantial missing data are often omitted, despite their strong predictive capabilities. These excluded covariates are generally believed not to simultaneously affect both treatment and outcome, indicating that they are not genuine confounders and do not impact the identification of the average treatment effect (ATE). In this paper, we introduce an alternative doubly robust (DR) estimator that fully leverages non-confounding predictive covariates to enhance efficiency, while also allowing missing values in such covariates. Beyond the double robustness property, our proposed estimator is designed to be more efficient than the standard DR estimator. Specifically, when the propensity score model is correctly specified, it achieves the smallest asymptotic variance among the class of DR estimators, and brings additional efficiency gains by further integrating predictive covariates. Simulation studies demonstrate the notable performance of the proposed estimator over current popular methods. An illustrative example is provided to assess the effectiveness of right heart catheterization (RHC) for critically ill patients.

Vessel segmentation and centerline extraction are two crucial preliminary tasks for many computer-aided diagnosis tools dealing with vascular diseases. Recently, deep-learning based methods have been widely applied to these tasks. However, classic deep-learning approaches struggle to capture the complex geometry and specific topology of vascular networks, which is of the utmost importance in most applications. To overcome these limitations, the clDice loss, a topological loss that focuses on the vessel centerlines, has been recently proposed. This loss requires computing, with a proposed soft-skeleton algorithm, the skeletons of both the ground truth and the predicted segmentation. However, the soft-skeleton algorithm provides suboptimal results on 3D images, which makes the clDice hardly suitable on 3D images. In this paper, we propose to replace the soft-skeleton algorithm by a U-Net which computes the vascular skeleton directly from the segmentation. We show that our method provides more accurate skeletons than the soft-skeleton algorithm. We then build upon this network a cascaded U-Net trained with the clDice loss to embed topological constraints during the segmentation. The resulting model is able to predict both the vessel segmentation and centerlines with a more accurate topology.

In the era of fast-paced precision medicine, observational studies play a major role in properly evaluating new treatments in clinical practice. Yet, unobserved confounding can significantly compromise causal conclusions drawn from non-randomized data. We propose a novel strategy that leverages randomized trials to quantify unobserved confounding. First, we design a statistical test to detect unobserved confounding with strength above a given threshold. Then, we use the test to estimate an asymptotically valid lower bound on the unobserved confounding strength. We evaluate the power and validity of our statistical test on several synthetic and semi-synthetic datasets. Further, we show how our lower bound can correctly identify the absence and presence of unobserved confounding in a real-world setting.

Genome assembly is a prominent problem studied in bioinformatics, which computes the source string using a set of its overlapping substrings. Classically, genome assembly uses assembly graphs built using this set of substrings to compute the source string efficiently, having a tradeoff between scalability and avoiding information loss. The scalable de Bruijn graphs come at the price of losing crucial overlap information. The complete overlap information is stored in overlap graphs using quadratic space. Hierarchical overlap graphs [IPL20] (HOG) overcome these limitations, avoiding information loss despite using linear space. After a series of suboptimal improvements, Khan and Park et al. simultaneously presented two optimal algorithms [CPM2021], where only the former was seemingly practical. We empirically analyze all the practical algorithms for computing HOG, where the optimal algorithm [CPM2021] outperforms the previous algorithms as expected, though at the expense of extra memory. However, it uses non-intuitive approach and non-trivial data structures. We present arguably the most intuitive algorithm, using only elementary arrays, which is also optimal. Our algorithm empirically proves even better for both time and memory over all the algorithms, highlighting its significance in both theory and practice. We further explore the applications of hierarchical overlap graphs to solve various forms of suffix-prefix queries on a set of strings. Loukides et al. [CPM2023] recently presented state-of-the-art algorithms for these queries. However, these algorithms require complex black-box data structures and are seemingly impractical. Our algorithms, despite failing to match the state-of-the-art algorithms theoretically, answer different queries ranging from 0.01-100 milliseconds for a data set having around a billion characters.

We study the performance of stochastic first-order methods for finding saddle points of convex-concave functions. A notorious challenge faced by such methods is that the gradients can grow arbitrarily large during optimization, which may result in instability and divergence. In this paper, we propose a simple and effective regularization technique that stabilizes the iterates and yields meaningful performance guarantees even if the domain and the gradient noise scales linearly with the size of the iterates (and is thus potentially unbounded). Besides providing a set of general results, we also apply our algorithm to a specific problem in reinforcement learning, where it leads to performance guarantees for finding near-optimal policies in an average-reward MDP without prior knowledge of the bias span.

Imposing known physical constraints, such as conservation laws, during neural network training introduces an inductive bias that can improve accuracy, reliability, convergence, and data efficiency for modeling physical dynamics. While such constraints can be softly imposed via loss function penalties, recent advancements in differentiable physics and optimization improve performance by incorporating PDE-constrained optimization as individual layers in neural networks. This enables a stricter adherence to physical constraints. However, imposing hard constraints significantly increases computational and memory costs, especially for complex dynamical systems. This is because it requires solving an optimization problem over a large number of points in a mesh, representing spatial and temporal discretizations, which greatly increases the complexity of the constraint. To address this challenge, we develop a scalable approach to enforce hard physical constraints using Mixture-of-Experts (MoE), which can be used with any neural network architecture. Our approach imposes the constraint over smaller decomposed domains, each of which is solved by an "expert" through differentiable optimization. During training, each expert independently performs a localized backpropagation step by leveraging the implicit function theorem; the independence of each expert allows for parallelization across multiple GPUs. Compared to standard differentiable optimization, our scalable approach achieves greater accuracy in the neural PDE solver setting for predicting the dynamics of challenging non-linear systems. We also improve training stability and require significantly less computation time during both training and inference stages.

Missing data often result in undesirable bias and loss of efficiency. These become substantial problems when the response mechanism is nonignorable, such that the response model depends on unobserved variables. It is necessary to estimate the joint distribution of unobserved variables and response indicators to manage nonignorable nonresponse. However, model misspecification and identification issues prevent robust estimates despite careful estimation of the target joint distribution. In this study, we modelled the distribution of the observed parts and derived sufficient conditions for model identifiability, assuming a logistic regression model as the response mechanism and generalised linear models as the main outcome model of interest. More importantly, the derived sufficient conditions are testable with the observed data and do not require any instrumental variables, which are often assumed to guarantee model identifiability but cannot be practically determined beforehand. To analyse missing data, we propose a new imputation method which incorporates verifiable identifiability using only observed data. Furthermore, we present the performance of the proposed estimators in numerical studies and apply the proposed method to two sets of real data: exit polls for the 19th South Korean election data and public data collected from the Korean Survey of Household Finances and Living Conditions.

北京阿比特科技有限公司