亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

G-formula is a popular approach for estimating treatment or exposure effects from longitudinal data that are subject to time-varying confounding. G-formula estimation is typically performed by Monte-Carlo simulation, with non-parametric bootstrapping used for inference. We show that G-formula can be implemented by exploiting existing methods for multiple imputation (MI) for synthetic data. This involves using an existing modified version of Rubin's variance estimator. In practice missing data is ubiquitous in longitudinal datasets. We show that such missing data can be readily accommodated as part of the MI procedure, and describe how MI software can be used to implement the approach. We explore its performance using a simulation study.

相關內容

Correlated outcomes are common in many practical problems. In some settings, one outcome is of particular interest, and others are auxiliary. To leverage information shared by all the outcomes, traditional multi-task learning (MTL) minimizes an averaged loss function over all the outcomes, which may lead to biased estimation for the target outcome, especially when the MTL model is mis-specified. In this work, based on a decomposition of estimation bias into two types, within-subspace and against-subspace, we develop a robust transfer learning approach to estimating a high-dimensional linear decision rule for the outcome of interest with the presence of auxiliary outcomes. The proposed method includes an MTL step using all outcomes to gain efficiency, and a subsequent calibration step using only the outcome of interest to correct both types of biases. We show that the final estimator can achieve a lower estimation error than the one using only the single outcome of interest. Simulations and real data analysis are conducted to justify the superiority of the proposed method.

Recently, addressing spatial confounding has become a major topic in spatial statistics. However, the literature has provided conflicting definitions, and many proposed definitions do not address the issue of confounding as it is understood in causal inference. We define spatial confounding as the existence of an unmeasured causal confounder with a spatial structure. We present a causal inference framework for nonparametric identification of the causal effect of a continuous exposure on an outcome in the presence of spatial confounding. We propose double machine learning (DML), a procedure in which flexible models are used to regress both the exposure and outcome variables on confounders to arrive at a causal estimator with favorable robustness properties and convergence rates, and we prove that this approach is consistent and asymptotically normal under spatial dependence. As far as we are aware, this is the first approach to spatial confounding that does not rely on restrictive parametric assumptions (such as linearity, effect homogeneity, or Gaussianity) for both identification and estimation. We demonstrate the advantages of the DML approach analytically and in simulations. We apply our methods and reasoning to a study of the effect of fine particulate matter exposure during pregnancy on birthweight in California.

Recently, causal inference has attracted increasing attention from researchers of recommender systems (RS), which analyzes the relationship between a cause and its effect and has a wide range of real-world applications in multiple fields. Causal inference can model the causality in recommender systems like confounding effects and deal with counterfactual problems such as offline policy evaluation and data augmentation. Although there are already some valuable surveys on causal recommendations, these surveys introduce approaches in a relatively isolated way and lack theoretical analysis of existing methods. Due to the unfamiliarity with causality to RS researchers, it is both necessary and challenging to comprehensively review the relevant studies from the perspective of causal theory, which might be instructive for the readers to propose new approaches in practice. This survey attempts to provide a systematic review of up-to-date papers in this area from a theoretical standpoint. Firstly, we introduce the fundamental concepts of causal inference as the basis of the following review. Then we propose a new taxonomy from the perspective of causal techniques and further discuss technical details about how existing methods apply causal inference to address specific recommender issues. Finally, we highlight some promising directions for future research in this field.

Parameters of sub-populations can be more relevant than super-population ones. For example, a healthcare provider may be interested in the effect of a treatment plan for a specific subset of their patients; policymakers may be concerned with the impact of a policy in a particular state within a given population. In these cases, the focus is on a specific finite population, as opposed to an infinite super-population. Such a population can be characterized by fixing some attributes that are intrinsic to them, leaving unexplained variations like measurement error as random. Inference for a population with fixed attributes can then be modeled as inferring parameters of a conditional distribution. Accordingly, it is desirable that confidence intervals are conditionally valid for the realized population, instead of marginalizing over many possible draws of populations. We provide a statistical inference framework for parameters of finite populations with known attributes. Leveraging the attribute information, our estimators and confidence intervals closely target a specific finite population. When the data is from the population of interest, our confidence intervals attain asymptotic conditional validity given the attributes, and are shorter than those for super-population inference. In addition, we develop procedures to infer parameters of new populations with differing covariate distributions; the confidence intervals are also conditionally valid for the new populations under mild conditions. Our methods extend to situations where the fixed information has a weaker structure or is only partially observed. We demonstrate the validity and applicability of our methods using simulated and real-world data.

We study the offline contextual bandit problem, where we aim to acquire an optimal policy using observational data. However, this data usually contains two deficiencies: (i) some variables that confound actions are not observed, and (ii) missing observations exist in the collected data. Unobserved confounders lead to a confounding bias and missing observations cause bias and inefficiency problems. To overcome these challenges and learn the optimal policy from the observed dataset, we present a new algorithm called Causal-Adjusted Pessimistic (CAP) policy learning, which forms the reward function as the solution of an integral equation system, builds a confidence set, and greedily takes action with pessimism. With mild assumptions on the data, we develop an upper bound to the suboptimality of CAP for the offline contextual bandit problem.

Temporal data, representing chronological observations of complex systems, has always been a typical data structure that can be widely generated by many domains, such as industry, medicine and finance. Analyzing this type of data is extremely valuable for various applications. Thus, different temporal data analysis tasks, eg, classification, clustering and prediction, have been proposed in the past decades. Among them, causal discovery, learning the causal relations from temporal data, is considered an interesting yet critical task and has attracted much research attention. Existing casual discovery works can be divided into two highly correlated categories according to whether the temporal data is calibrated, ie, multivariate time series casual discovery, and event sequence casual discovery. However, most previous surveys are only focused on the time series casual discovery and ignore the second category. In this paper, we specify the correlation between the two categories and provide a systematical overview of existing solutions. Furthermore, we provide public datasets, evaluation metrics and new perspectives for temporal data casual discovery.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.

Many current applications use recommendations in order to modify the natural user behavior, such as to increase the number of sales or the time spent on a website. This results in a gap between the final recommendation objective and the classical setup where recommendation candidates are evaluated by their coherence with past user behavior, by predicting either the missing entries in the user-item matrix, or the most likely next event. To bridge this gap, we optimize a recommendation policy for the task of increasing the desired outcome versus the organic user behavior. We show this is equivalent to learning to predict recommendation outcomes under a fully random recommendation policy. To this end, we propose a new domain adaptation algorithm that learns from logged data containing outcomes from a biased recommendation policy and predicts recommendation outcomes according to random exposure. We compare our method against state-of-the-art factorization methods, in addition to new approaches of causal recommendation and show significant improvements.

北京阿比特科技有限公司