In the rapidly evolving field of crypto-assets, white papers are essential documents for investor guidance, and are now subject to unprecedented content requirements under the EU's Markets in Crypto-Assets Regulation (MiCAR). Natural Language Processing can serve as a powerful tool for both analyzing these documents and assisting in regulatory compliance. This paper delivers two contributions to the topic. First, we survey existing applications of textual analysis to unregulated crypto-asset white papers, uncovering a research gap that could be bridged with interdisciplinary collaboration. We then conduct an analysis of the changes introduced by MiCAR, highlighting the opportunities and challenges of integrating NLP within the new regulatory framework. Our findings set the stage for further research, with the potential to benefit regulators, crypto-asset issuers, and investors.
Assisted and autonomous driving are rapidly gaining momentum, and will soon become a reality. Among their key enablers, artificial intelligence and machine learning are expected to play a prominent role, also thanks to the massive amount of data that smart vehicles will collect from their onboard sensors. In this domain, federated learning is one of the most effective and promising techniques for training global machine learning models, while preserving data privacy at the vehicles and optimizing communications resource usage. In this work, we propose VREM-FL, a computation-scheduling co-design for vehicular federated learning that leverages mobility of vehicles in conjunction with estimated 5G radio environment maps. VREM-FL jointly optimizes the global model learned at the server while wisely allocating communication resources. This is achieved by orchestrating local computations at the vehicles in conjunction with the transmission of their local model updates in an adaptive and predictive fashion, by exploiting radio channel maps. The proposed algorithm can be tuned to trade model training time for radio resource usage. Experimental results demonstrate the efficacy of utilizing radio maps. VREM-FL outperforms literature benchmarks for both a linear regression model (learning time reduced by 28%) and a deep neural network for a semantic image segmentation task (doubling the number of model updates within the same time window).
Decomposition puzzles are pencil-and-paper logic puzzles that involve partitioning a rectangular grid into several regions to satisfy certain rules. In this paper, we construct a generic card-based protocol called printing protocol, which can be used to physically verify solutions of decompositon puzzles. We apply the printing protocol to develop card-based zero-knowledge proof protocols for two such puzzles: Five Cells and Meadows. These protocols allow a prover to physically show that he/she knows solutions of the puzzles without revealing them.
Envisioned as one of the most promising technologies, holographic multiple-input multiple-output (H-MIMO) recently attracts notable research interests for its great potential in expanding wireless possibilities and achieving fundamental wireless limits. Empowered by the nearly continuous, large and energy-efficient surfaces with powerful electromagnetic (EM) wave control capabilities, H-MIMO opens up the opportunity for signal processing in a more fundamental EM-domain, paving the way for realizing holographic imaging level communications in supporting the extremely high spectral efficiency and energy efficiency in future networks. In this article, we try to implement a generalized EM-domain near-field channel modeling and study its capacity limit of point-to-point H-MIMO systems that equips arbitrarily placed surfaces in a line-of-sight (LoS) environment. Two effective and computational-efficient channel models are established from their integral counterpart, where one is with a sophisticated formula but showcases more accurate, and another is concise with a slight precision sacrifice. Furthermore, we unveil the capacity limit using our channel model, and derive a tight upper bound based upon an elaborately built analytical framework. Our result reveals that the capacity limit grows logarithmically with the product of transmit element area, receive element area, and the combined effects of $1/{{d}_{mn}^2}$, $1/{{d}_{mn}^4}$, and $1/{{d}_{mn}^6}$ over all transmit and receive antenna elements, where $d_{mn}$ indicates the distance between each transmit and receive elements. Numerical evaluations validate the effectiveness of our channel models, and showcase the slight disparity between the upper bound and the exact capacity, which is beneficial for predicting practical system performance.
Interactive intelligent computing applications are increasingly prevalent, creating a need for AI/ML platforms optimized to reduce per-event latency while maintaining high throughput and efficient resource management. Yet many intelligent applications run on AI/ML platforms that optimize for high throughput even at the cost of high tail-latency. Cascade is a new AI/ML hosting platform intended to untangle this puzzle. Innovations include a legacy-friendly storage layer that moves data with minimal copying and a "fast path" that collocates data and computation to maximize responsiveness. Our evaluation shows that Cascade reduces latency by orders of magnitude with no loss of throughput.
Neural networks' expressiveness comes at the cost of complex, black-box models that often extrapolate poorly beyond the domain of the training dataset, conflicting with the goal of finding compact analytic expressions to describe scientific data. We introduce OccamNet, a neural network model that finds interpretable, compact, and sparse symbolic fits to data, \`a la Occam's razor. Our model defines a probability distribution over functions with efficient sampling and function evaluation. We train by sampling functions and biasing the probability mass toward better fitting solutions, backpropagating using cross-entropy matching in a reinforcement-learning loss. OccamNet can identify symbolic fits for a variety of problems, including analytic and non-analytic functions, implicit functions, and simple image classification, and can outperform state-of-the-art symbolic regression methods on real-world regression datasets. Our method requires a minimal memory footprint, fits complicated functions in minutes on a single CPU, and scales on a GPU.
Fully Homomorphic Encryption (FHE) is a technique that allows arbitrary computations to be performed on encrypted data without the need for decryption, making it ideal for securing many emerging applications. However, FHE computation is significantly slower than computation on plain data due to the increase in data size after encryption. Processing In-Memory (PIM) is a promising technology that can accelerate data-intensive workloads with extensive parallelism. However, FHE is challenging for PIM acceleration due to the long-bitwidth multiplications and complex data movements involved. We propose a PIM-based FHE accelerator, FHEmem, which exploits a novel processing in-memory architecture to achieve high-throughput and efficient acceleration for FHE. We propose an optimized end-to-end processing flow, from low-level hardware processing to high-level application mapping, that fully exploits the high throughput of FHEmem hardware. Our evaluation shows FHEmem achieves significant speedup and efficiency improvement over state-of-the-art FHE accelerators.
Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.
Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.
Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.
We present MMKG, a collection of three knowledge graphs that contain both numerical features and (links to) images for all entities as well as entity alignments between pairs of KGs. Therefore, multi-relational link prediction and entity matching communities can benefit from this resource. We believe this data set has the potential to facilitate the development of novel multi-modal learning approaches for knowledge graphs.We validate the utility ofMMKG in the sameAs link prediction task with an extensive set of experiments. These experiments show that the task at hand benefits from learning of multiple feature types.