亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Underwater caves are challenging environments that are crucial for water resource management, and for our understanding of hydro-geology and history. Mapping underwater caves is a time-consuming, labor-intensive, and hazardous operation. For autonomous cave mapping by underwater robots, the major challenge lies in vision-based estimation in the complete absence of ambient light, which results in constantly moving shadows due to the motion of the camera-light setup. Thus, detecting and following the caveline as navigation guidance is paramount for robots in autonomous cave mapping missions. In this paper, we present a computationally light caveline detection model based on a novel Vision Transformer (ViT)-based learning pipeline. We address the problem of scarce annotated training data by a weakly supervised formulation where the learning is reinforced through a series of noisy predictions from intermediate sub-optimal models. We validate the utility and effectiveness of such weak supervision for caveline detection and tracking in three different cave locations: USA, Mexico, and Spain. Experimental results demonstrate that our proposed model, CL-ViT, balances the robustness-efficiency trade-off, ensuring good generalization performance while offering 10+ FPS on single-board (Jetson TX2) devices.

相關內容

Recommendation systems aim to provide users with relevant suggestions, but often lack interpretability and fail to capture higher-level semantic relationships between user behaviors and profiles. In this paper, we propose a novel approach that leverages large language models (LLMs) to construct personalized reasoning graphs. These graphs link a user's profile and behavioral sequences through causal and logical inferences, representing the user's interests in an interpretable way. Our approach, LLM reasoning graphs (LLMRG), has four components: chained graph reasoning, divergent extension, self-verification and scoring, and knowledge base self-improvement. The resulting reasoning graph is encoded using graph neural networks, which serves as additional input to improve conventional recommender systems, without requiring extra user or item information. Our approach demonstrates how LLMs can enable more logical and interpretable recommender systems through personalized reasoning graphs. LLMRG allows recommendations to benefit from both engineered recommendation systems and LLM-derived reasoning graphs. We demonstrate the effectiveness of LLMRG on benchmarks and real-world scenarios in enhancing base recommendation models.

The recent mass adoption of DNNs, even in safety-critical scenarios, has shifted the focus of the research community towards the creation of inherently intrepretable models. Concept Bottleneck Models (CBMs) constitute a popular approach where hidden layers are tied to human understandable concepts allowing for investigation and correction of the network's decisions. However, CBMs usually suffer from: (i) performance degradation and (ii) lower interpretability than intended due to the sheer amount of concepts contributing to each decision. In this work, we propose a simple yet highly intuitive interpretable framework based on Contrastive Language Image models and a single sparse linear layer. In stark contrast to related approaches, the sparsity in our framework is achieved via principled Bayesian arguments by inferring concept presence via a data-driven Bernoulli distribution. As we experimentally show, our framework not only outperforms recent CBM approaches accuracy-wise, but it also yields high per example concept sparsity, facilitating the individual investigation of the emerging concepts.

Designing distributed systems to have predictable performance under high load is difficult because of resource exhaustion, non-linearity, and stochastic behaviour. Timeliness, i.e., delivering results within defined time bounds, is a central aspect of predictable performance. In this paper, we focus on timeliness using the DELTA-Q Systems Development paradigm (DELTA-QSD, developed by PNSol), which computes timeliness by modelling systems observationally using so-called outcome expressions. An outcome expression is a compositional definition of a system's observed behaviour in terms of its basic operations. Given the behaviour of the basic operations, DELTA-QSD efficiently computes the stochastic behaviour of the whole system including its timeliness. This paper formally proves useful algebraic properties of outcome expressions w.r.t. timeliness. We prove the different algebraic structures the set of outcome expressions form with the different DELTA-QSD operators and demonstrate why those operators do not form richer structures. We prove or disprove the set of all possible distributivity results on outcome expressions. On our way for disproving 8 of those distributivity results, we develop a technique called properisation, which gives rise to the first body of maths for improper random variables. Finally, we also prove 14 equivalences that have been used in the past in the practice of DELTA-QSD. An immediate benefit is rewrite rules that can be used for design exploration under established timeliness equivalence. This work is part of an ongoing project to disseminate and build tool support for DELTA-QSD. The ability to rewrite outcome expressions is essential for efficient tool support.

A plethora of outlier detectors have been explored in the time series domain, however, in a business sense, not all outliers are anomalies of interest. Existing anomaly detection solutions are confined to certain outlier detectors limiting their applicability to broader anomaly detection use cases. Network KPIs (Key Performance Indicators) tend to exhibit stochastic behaviour producing statistical outliers, most of which do not adversely affect business operations. Thus, a heuristic is required to capture the business definition of an anomaly for time series KPI. This article proposes an Adaptive Thresholding Heuristic (ATH) to dynamically adjust the detection threshold based on the local properties of the data distribution and adapt to changes in time series patterns. The heuristic derives the threshold based on the expected periodicity and the observed proportion of anomalies minimizing false positives and addressing concept drift. ATH can be used in conjunction with any underlying seasonality decomposition method and an outlier detector that yields an outlier score. This method has been tested on EON1-Cell-U, a labeled KPI anomaly dataset produced by Ericsson, to validate our hypothesis. Experimental results show that ATH is computationally efficient making it scalable for near real time anomaly detection and flexible with multiple forecasters and outlier detectors.

This work investigates the use of smooth neural networks for modeling dynamic variations of implicit surfaces under the level set equation (LSE). For this, it extends the representation of neural implicit surfaces to the space-time $\mathbb{R}^3\times \mathbb{R}$, which opens up mechanisms for continuous geometric transformations. Examples include evolving an initial surface towards general vector fields, smoothing and sharpening using the mean curvature equation, and interpolations of initial conditions. The network training considers two constraints. A data term is responsible for fitting the initial condition to the corresponding time instant, usually $\mathbb{R}^3 \times \{0\}$. Then, a LSE term forces the network to approximate the underlying geometric evolution given by the LSE, without any supervision. The network can also be initialized based on previously trained initial conditions, resulting in faster convergence compared to the standard approach.

We equip a smaller Language Model to generalise to answering challenging compositional questions that have not been seen in training. To do so we propose a combination of multitask supervised pretraining on up to 93 tasks designed to instill diverse reasoning abilities, and a dense retrieval system that aims to retrieve a set of evidential paragraph fragments. Recent progress in question-answering has been achieved either through prompting methods against very large pretrained Language Models in zero or few-shot fashion, or by fine-tuning smaller models, sometimes in conjunction with information retrieval. We focus on the less explored question of the extent to which zero-shot generalisation can be enabled in smaller models with retrieval against a corpus within which sufficient information to answer a particular question may not exist. We establish strong baselines in this setting for diverse evaluation datasets (StrategyQA, CommonsenseQA, IIRC, DROP, Musique and ARC-DA), and show that performance can be significantly improved by adding retrieval-augmented training datasets which are designed to expose our models to a variety of heuristic reasoning strategies such as weighing partial evidence or ignoring an irrelevant context.

Predicting information cascade popularity is a fundamental problem in social networks. Capturing temporal attributes and cascade role information (e.g., cascade graphs and cascade sequences) is necessary for understanding the information cascade. Current methods rarely focus on unifying this information for popularity predictions, which prevents them from effectively modeling the full properties of cascades to achieve satisfactory prediction performances. In this paper, we propose an explicit Time embedding based Cascade Attention Network (TCAN) as a novel popularity prediction architecture for large-scale information networks. TCAN integrates temporal attributes (i.e., periodicity, linearity, and non-linear scaling) into node features via a general time embedding approach (TE), and then employs a cascade graph attention encoder (CGAT) and a cascade sequence attention encoder (CSAT) to fully learn the representation of cascade graphs and cascade sequences. We use two real-world datasets (i.e., Weibo and APS) with tens of thousands of cascade samples to validate our methods. Experimental results show that TCAN obtains mean logarithm squared errors of 2.007 and 1.201 and running times of 1.76 hours and 0.15 hours on both datasets, respectively. Furthermore, TCAN outperforms other representative baselines by 10.4%, 3.8%, and 10.4% in terms of MSLE, MAE, and R-squared on average while maintaining good interpretability.

Imitation learning methods are used to infer a policy in a Markov decision process from a dataset of expert demonstrations by minimizing a divergence measure between the empirical state occupancy measures of the expert and the policy. The guiding signal to the policy is provided by the discriminator used as part of an versarial optimization procedure. We observe that this model is prone to absorbing spurious correlations present in the expert data. To alleviate this issue, we propose to use causal invariance as a regularization principle for adversarial training of these models. The regularization objective is applicable in a straightforward manner to existing adversarial imitation frameworks. We demonstrate the efficacy of the regularized formulation in an illustrative two-dimensional setting as well as a number of high-dimensional robot locomotion benchmark tasks.

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.

Humans have a natural instinct to identify unknown object instances in their environments. The intrinsic curiosity about these unknown instances aids in learning about them, when the corresponding knowledge is eventually available. This motivates us to propose a novel computer vision problem called: `Open World Object Detection', where a model is tasked to: 1) identify objects that have not been introduced to it as `unknown', without explicit supervision to do so, and 2) incrementally learn these identified unknown categories without forgetting previously learned classes, when the corresponding labels are progressively received. We formulate the problem, introduce a strong evaluation protocol and provide a novel solution, which we call ORE: Open World Object Detector, based on contrastive clustering and energy based unknown identification. Our experimental evaluation and ablation studies analyze the efficacy of ORE in achieving Open World objectives. As an interesting by-product, we find that identifying and characterizing unknown instances helps to reduce confusion in an incremental object detection setting, where we achieve state-of-the-art performance, with no extra methodological effort. We hope that our work will attract further research into this newly identified, yet crucial research direction.

北京阿比特科技有限公司