The development of Courses of Action (COAs) in military operations is traditionally a time-consuming and intricate process. Addressing this challenge, this study introduces COA-GPT, a novel algorithm employing Large Language Models (LLMs) for rapid and efficient generation of valid COAs. COA-GPT incorporates military doctrine and domain expertise to LLMs through in-context learning, allowing commanders to input mission information - in both text and image formats - and receive strategically aligned COAs for review and approval. Uniquely, COA-GPT not only accelerates COA development, producing initial COAs within seconds, but also facilitates real-time refinement based on commander feedback. This work evaluates COA-GPT in a military-relevant scenario within a militarized version of the StarCraft II game, comparing its performance against state-of-the-art reinforcement learning algorithms. Our results demonstrate COA-GPT's superiority in generating strategically sound COAs more swiftly, with added benefits of enhanced adaptability and alignment with commander intentions. COA-GPT's capability to rapidly adapt and update COAs during missions presents a transformative potential for military planning, particularly in addressing planning discrepancies and capitalizing on emergent windows of opportunities.
Integration of unmanned aerial vehicles (UAVs) for surveillance or monitoring applications into fifth generation (5G) New Radio (NR) cellular networks is an intriguing problem that has recently tackled a lot of interest in both academia and industry. For an efficient spectrum usage, we consider a recently-proposed sky-ground nonorthogonal multiple access (NOMA) scheme, where a cellular-connected UAV acting as aerial user (AU) and a static terrestrial user (TU) are paired to simultaneously transmit their uplink signals to a base station (BS) in the same time-frequency resource blocks. In such a case, due to the highly dynamic nature of the UAV, the signal transmitted by the AU experiences both time dispersion due to multipath propagation effects and frequency dispersion caused by Doppler shifts. On the other hand, for a static ground network, frequency dispersion of the signal transmitted by the TU is negligible and only multipath effects have to be taken into account. To decode the superposed signals at the BS through successive interference cancellation, accurate estimates of both the AU and TU channels are needed. In this paper, we propose channel estimation procedures that suitably exploit the different circular/noncircular modulation formats (modulation diversity) and the different almost-cyclostationarity features (Doppler diversity) of the AU and TU by means of widely-linear time-varying processing. Our estimation approach is semi-blind since Doppler shifts and time delays of the AU are estimated based on the received data only, whereas the remaining relevant parameters of the AU and TU channels are acquired relying also on the available training symbols. Monte Carlo numerical results demonstrate that the proposed channel estimation algorithms can satisfactorily acquire all the relevant parameters in different operative conditions.
The adoption of Deep Neural Networks (DNNs) has greatly benefited Natural Language Processing (NLP) during the past decade. However, the demands of long document analysis are quite different from those of shorter texts, while the ever increasing size of documents uploaded online renders automated understanding of lengthy texts a critical issue. Relevant applications include automated Web mining, legal document review, medical records analysis, financial reports analysis, contract management, environmental impact assessment, news aggregation, etc. Despite the relatively recent development of efficient algorithms for analyzing long documents, practical tools in this field are currently flourishing. This article serves as an entry point into this dynamic domain and aims to achieve two objectives. First of all, it provides an introductory overview of the relevant neural building blocks, serving as a concise tutorial for the field. Secondly, it offers a brief examination of the current state-of-the-art in two key long document analysis tasks: document classification and document summarization. Sentiment analysis for long texts is also covered, since it is typically treated as a particular case of document classification. Consequently, this article presents an introductory exploration of document-level analysis, addressing the primary challenges, concerns, and existing solutions. Finally, it offers a concise definition of "long text/document", presents an original overarching taxonomy of common deep neural methods for long document analysis and lists publicly available annotated datasets that can facilitate further research in this area.
Click-through rate (CTR) prediction is a core task in recommender systems. Existing methods (IDRec for short) rely on unique identities to represent distinct users and items that have prevailed for decades. On one hand, IDRec often faces significant performance degradation on cold-start problem; on the other hand, IDRec cannot use longer training data due to constraints imposed by iteration efficiency. Most prior studies alleviate the above problems by introducing pre-trained knowledge(e.g. pre-trained user model or multi-modal embeddings). However, the explosive growth of online latency can be attributed to the huge parameters in the pre-trained model. Therefore, most of them cannot employ the unified model of end-to-end training with IDRec in industrial recommender systems, thus limiting the potential of the pre-trained model. To this end, we propose a $\textbf{P}$re-trained $\textbf{P}$lug-in CTR $\textbf{M}$odel, namely PPM. PPM employs multi-modal features as input and utilizes large-scale data for pre-training. Then, PPM is plugged in IDRec model to enhance unified model's performance and iteration efficiency. Upon incorporating IDRec model, certain intermediate results within the network are cached, with only a subset of the parameters participating in training and serving. Hence, our approach can successfully deploy an end-to-end model without causing huge latency increases. Comprehensive offline experiments and online A/B testing at JD E-commerce demonstrate the efficiency and effectiveness of PPM.
Audits are critical mechanisms for identifying the risks and limitations of deployed artificial intelligence (AI) systems. However, the effective execution of AI audits remains incredibly difficult. As a result, practitioners make use of various tools to support their efforts. Drawing on interviews with 35 AI audit practitioners and a landscape analysis of 390 tools, we map the current ecosystem of available AI audit tools. While there are many tools designed to assist practitioners with setting standards and evaluating AI systems, these tools often fell short of supporting the accountability goals of AI auditing in practice. We thus highlight areas for future tool development beyond evaluation -- from harms discovery to advocacy -- and outline challenges practitioners faced in their efforts to use AI audit tools. We conclude that resources are lacking to adequately support the full scope of needs for many AI audit practitioners and recommend that the field move beyond tools for just evaluation, towards more comprehensive infrastructure for AI accountability.
Distributed Deep Learning (DDL), as a paradigm, dictates the use of GPU-based clusters as the optimal infrastructure for training large-scale Deep Neural Networks (DNNs). However, the high cost of such resources makes them inaccessible to many users. Public cloud services, particularly Spot Virtual Machines (VMs), offer a cost-effective alternative, but their unpredictable availability poses a significant challenge to the crucial checkpointing process in DDL. To address this, we introduce DeepVM, a novel solution that recommends cost-effective cluster configurations by intelligently balancing the use of Spot and On-Demand VMs. DeepVM leverages a four-stage process that analyzes instance performance using the FLOPP (FLoating-point Operations Per Price) metric, performs architecture-level analysis with linear programming, and identifies the optimal configuration for the user-specific needs. Extensive simulations and real-world deployments in the AWS environment demonstrate that DeepVM consistently outperforms other policies, reducing training costs and overall makespan. By enabling cost-effective checkpointing with Spot VMs, DeepVM opens up DDL to a wider range of users and facilitates a more efficient training of complex DNNs.
We propose an objective intelligibility measure (OIM), called the Gammachirp Envelope Similarity Index (GESI), which can predict the speech intelligibility (SI) of simulated hearing loss (HL) sounds for normal hearing (NH) listeners. GESI is an intrusive method that computes the SI metric using the gammachirp filterbank (GCFB), the modulation filterbank, and the extended cosine similarity measure. The unique features of GESI are that i) it reflects the hearing impaired (HI) listener's HL that appears in the audiogram and is caused by active and passive cochlear dysfunction, ii) it provides a single goodness metric, as in the widely used STOI and ESTOI, that can be used immediately to evaluate SE algorithms, and iii) it provides a simple control parameter to accept the level asymmetry of the reference and test sounds and to deal with individual listening conditions and environments. We evaluated GESI and the conventional OIMs, STOI, ESTOI, MBSTOI, and HASPI versions 1 and 2 by using four SI experiments on words of male and female speech sounds in both laboratory and remote environments. GESI was shown to outperform the other OIMs in the evaluations. GESI could be used to improve SE algorithms in assistive listening devices for individual HI listeners.
Thanks to their generative capabilities, large language models (LLMs) have become an invaluable tool for creative processes. These models have the capacity to produce hundreds and thousands of visual and textual outputs, offering abundant inspiration for creative endeavors. But are we harnessing their full potential? We argue that current interaction paradigms fall short, guiding users towards rapid convergence on a limited set of ideas, rather than empowering them to explore the vast latent design space in generative models. To address this limitation, we propose a framework that facilitates the structured generation of design space in which users can seamlessly explore, evaluate, and synthesize a multitude of responses. We demonstrate the feasibility and usefulness of this framework through the design and development of an interactive system, Luminate, and a user study with 14 professional writers. Our work advances how we interact with LLMs for creative tasks, introducing a way to harness the creative potential of LLMs.
Electrochemical communication is a mechanism that enables intercellular interaction among bacteria within communities. Bacteria achieves synchronization and coordinates collective actions at the population level through the utilization of electrochemical signals. In this work, we investigate the response of bacterial biofilms to artificial potassium concentration stimulation. We introduce signal inputs at a specific location within the biofilm and observe their transmission to other regions, facilitated by intermediary cells that amplify and relay the signal. We analyze the output signals when biofilm regions are subjected to different input signal types and explore their impact on biofilm growth. Furthermore, we investigate how the temporal gap between input pulses influences output signal characteristics, demonstrating that an appropriate gap yields distinct and well-defined output signals. Our research sheds light on the potential of bacterial biofilms as communication nodes in electrochemical communication networks.
Context. The adoption of Machine Learning (ML)--enabled systems is steadily increasing. Nevertheless, there is a shortage of ML-specific quality assurance approaches, possibly because of the limited knowledge of how quality-related concerns emerge and evolve in ML-enabled systems. Objective. We aim to investigate the emergence and evolution of specific types of quality-related concerns known as ML-specific code smells, i.e., sub-optimal implementation solutions applied on ML pipelines that may significantly decrease both the quality and maintainability of ML-enabled systems. More specifically, we present a plan to study ML-specific code smells by empirically analyzing (i) their prevalence in real ML-enabled systems, (ii) how they are introduced and removed, and (iii) their survivability. Method. We will conduct an exploratory study, mining a large dataset of ML-enabled systems and analyzing over 400k commits about 337 projects. We will track and inspect the introduction and evolution of ML smells through CodeSmile, a novel ML smell detector that we will build to enable our investigation and to detect ML-specific code smells.
The military is investigating methods to improve communication and agility in its multi-domain operations (MDO). Nascent popularity of Internet of Things (IoT) has gained traction in public and government domains. Its usage in MDO may revolutionize future battlefields and may enable strategic advantage. While this technology offers leverage to military capabilities, it comes with challenges where one is the uncertainty and associated risk. A key question is how can these uncertainties be addressed. Recently published studies proposed information camouflage to transform information from one data domain to another. As this is comparatively a new approach, we investigate challenges of such transformations and how these associated uncertainties can be detected and addressed, specifically unknown-unknowns to improve decision-making.