亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we investigate large-scale linear systems driven by a fractional Brownian motion (fBm) with Hurst parameter $H\in [1/2, 1)$. We interpret these equations either in the sense of Young ($H>1/2$) or Stratonovich ($H=1/2$). Especially fractional Young differential equations are well suited for modeling real-world phenomena as they capture memory effects. Although it is very complex to solve them in high dimensions, model reduction schemes for Young or Stratonovich settings have not yet been studied much. To address this gap, we analyze important features of fundamental solutions associated to the underlying systems. We prove a weak type of semigroup property which is the foundation of studying system Gramians. From the introduced Gramians, dominant subspace can be identified which is shown in this paper as well. The difficulty for fractional drivers with $H>1/2$ is that there is no link of the corresponding Gramians to algebraic equations making the computation very difficult. Therefore, we further propose empirical Gramians that can be learned from simulation data. Subsequently, we introduce projection-based reduced order models (ROMs) using the dominant subspace information. We point out that such projections are not always optimal for Stratonovich equations as stability might not be preserved and since the error might be larger than expected. Therefore, an improved ROM is proposed for $H=1/2$. We validate our techniques conducting numerical experiments on some large-scale stochastic differential equations driven by fBm resulting from spatial discretizations of fractional stochastic PDEs. Overall, our study provides useful insights into the applicability and effectiveness of reduced order methods for stochastic systems with fractional noise, which can potentially aid in the development of more efficient computational strategies for practical applications.

相關內容

This paper presents the error analysis of numerical methods on graded meshes for stochastic Volterra equations with weakly singular kernels. We first prove a novel regularity estimate for the exact solution via analyzing the associated convolution structure. This reveals that the exact solution exhibits an initial singularity in the sense that its H\"older continuous exponent on any neighborhood of $t=0$ is lower than that on every compact subset of $(0,T]$. Motivated by the initial singularity, we then construct the Euler--Maruyama method, fast Euler--Maruyama method, and Milstein method based on graded meshes. By establishing their pointwise-in-time error estimates, we give the grading exponents of meshes to attain the optimal uniform-in-time convergence orders, where the convergence orders improve those of the uniform mesh case. Numerical experiments are finally reported to confirm the sharpness of theoretical findings.

This paper develops a new vascular respiratory motion compensation algorithm, Motion-Related Compensation (MRC), to conduct vascular respiratory motion compensation by extrapolating the correlation between invisible vascular and visible non-vascular. Robot-assisted vascular intervention can significantly reduce the radiation exposure of surgeons. In robot-assisted image-guided intervention, blood vessels are constantly moving/deforming due to respiration, and they are invisible in the X-ray images unless contrast agents are injected. The vascular respiratory motion compensation technique predicts 2D vascular roadmaps in live X-ray images. When blood vessels are visible after contrast agents injection, vascular respiratory motion compensation is conducted based on the sparse Lucas-Kanade feature tracker. An MRC model is trained to learn the correlation between vascular and non-vascular motions. During the intervention, the invisible blood vessels are predicted with visible tissues and the trained MRC model. Moreover, a Gaussian-based outlier filter is adopted for refinement. Experiments on in-vivo data sets show that the proposed method can yield vascular respiratory motion compensation in 0.032 sec, with an average error 1.086 mm. Our real-time and accurate vascular respiratory motion compensation approach contributes to modern vascular intervention and surgical robots.

In the present paper, we formulate two versions of Frank--Wolfe algorithm or conditional gradient method to solve the DC optimization problem with an adaptive step size. The DC objective function consists of two components; the first is thought to be differentiable with a continuous Lipschitz gradient, while the second is only thought to be convex. The second version is based on the first and employs finite differences to approximate the gradient of the first component of the objective function. In contrast to past formulations that used the curvature/Lipschitz-type constant of the objective function, the step size computed does not require any constant associated with the components. For the first version, we established that the algorithm is well-defined of the algorithm and that every limit point of the generated sequence is a stationary point of the problem. We also introduce the class of weak-star-convex functions and show that, despite the fact that these functions are non-convex in general, the rate of convergence of the first version of the algorithm to minimize these functions is ${\cal O}(1/k)$. The finite difference used to approximate the gradient in the second version of the Frank-Wolfe algorithm is computed with the step-size adaptively updated using two previous iterations. Unlike previous applications of finite difference in the Frank-Wolfe algorithm, which provided approximate gradients with absolute error, the one used here provides us with a relative error, simplifying the algorithm analysis. In this case, we show that all limit points of the generated sequence for the second version of the Frank-Wolfe algorithm are stationary points for the problem under consideration, and we establish that the rate of convergence for the duality gap is ${\cal O}(1/\sqrt{k})$.

In this paper, we investigate an ill-posed Cauchy problem involving a stochastic parabolic equation. We first establish a Carleman estimate for this equation. Leveraging this estimate, we are able to derive the conditional stability and convergence rate of the Tikhonov regularization method for the aforementioned ill-posed Cauchy problem. To complement our theoretical analysis, we employ kernel-based learning theory to implement the completed Tikhonov regularization method for several numerical examples.

In this paper, we propose and analyze an explicit time-stepping scheme for a spatial discretization of stochastic Cahn--Hilliard equation with additive noise. The fully discrete approximation combines a spectral Galerkin method in space with a tamed exponential Euler method in time. In contrast to implicit schemes in the literature, the explicit scheme here is easily implementable and produces significant improvement in the computational efficiency. It is shown that the fully discrete approximation converges strongly to the exact solution, with strong convergence rates identified. Different from the tamed time-stepping schemes for stochastic Allen--Cahn equations, essential difficulties arise in the analysis due to the presence of the unbounded linear operator in front of the nonlinearity. To overcome them, new and non-trivial arguments are developed in the present work. To the best of our knowledge, it is the first result concerning an explicit scheme for the stochastic Cahn--Hilliard equation. Numerical experiments are finally performed to confirm the theoretical results.

High-dimensional Partial Differential Equations (PDEs) are a popular mathematical modelling tool, with applications ranging from finance to computational chemistry. However, standard numerical techniques for solving these PDEs are typically affected by the curse of dimensionality. In this work, we tackle this challenge while focusing on stationary diffusion equations defined over a high-dimensional domain with periodic boundary conditions. Inspired by recent progress in sparse function approximation in high dimensions, we propose a new method called compressive Fourier collocation. Combining ideas from compressive sensing and spectral collocation, our method replaces the use of structured collocation grids with Monte Carlo sampling and employs sparse recovery techniques, such as orthogonal matching pursuit and $\ell^1$ minimization, to approximate the Fourier coefficients of the PDE solution. We conduct a rigorous theoretical analysis showing that the approximation error of the proposed method is comparable with the best $s$-term approximation (with respect to the Fourier basis) to the solution. Using the recently introduced framework of random sampling in bounded Riesz systems, our analysis shows that the compressive Fourier collocation method mitigates the curse of dimensionality with respect to the number of collocation points under sufficient conditions on the regularity of the diffusion coefficient. We also present numerical experiments that illustrate the accuracy and stability of the method for the approximation of sparse and compressible solutions.

In this paper we present a hybridizable discontinuous Galerkin method for the time-dependent Navier-Stokes equations coupled to the quasi-static poroelasticity equations via interface conditions. We determine a bound on the data that guarantees stability and well-posedness of the fully discrete problem and prove a priori error estimates. A numerical example confirms our analysis.

We establish optimal error bounds on time-splitting methods for the nonlinear Schr\"odinger equation with low regularity potential and typical power-type nonlinearity $ f(\rho) = \rho^\sigma $, where $ \rho:=|\psi|^2 $ is the density with $ \psi $ the wave function and $ \sigma > 0 $ the exponent of the nonlinearity. For the first-order Lie-Trotter time-splitting method, optimal $ L^2 $-norm error bound is proved for $L^\infty$-potential and $ \sigma > 0 $, and optimal $H^1$-norm error bound is obtained for $ W^{1, 4} $-potential and $ \sigma \geq 1/2 $. For the second-order Strang time-splitting method, optimal $ L^2 $-norm error bound is established for $H^2$-potential and $ \sigma \geq 1 $, and optimal $H^1$-norm error bound is proved for $H^3$-potential and $ \sigma \geq 3/2 $. Compared to those error estimates of time-splitting methods in the literature, our optimal error bounds either improve the convergence rates under the same regularity assumptions or significantly relax the regularity requirements on potential and nonlinearity for optimal convergence orders. A key ingredient in our proof is to adopt a new technique called \textit{regularity compensation oscillation} (RCO), where low frequency modes are analyzed by phase cancellation, and high frequency modes are estimated by regularity of the solution. Extensive numerical results are reported to confirm our error estimates and to demonstrate that they are sharp.

Introduction: Oblique Target-rotation in the context of exploratory factor analysis is a relevant method for the investigation of the oblique independent clusters model. It was argued that minimizing single cross-loadings by means of target rotation may lead to large effects of sampling error on the target rotated factor solutions. Method: In order to minimize effects of sampling error on results of Target-rotation we propose to compute the mean cross-loadings for each block of salient loadings of the independent clusters model and to perform target rotation for the block-wise mean cross-loadings. The resulting transformation-matrix is than applied to the complete unrotated loading matrix in order to produce mean Target-rotated factors. Results: A simulation study based on correlated independent factor models revealed that mean oblique Target-rotation resulted in smaller negative bias of factor inter-correlations than conventional Target-rotation based on single loadings, especially when sample size was small and when the number of factors was large. An empirical example revealed that the similarity of Target-rotated factors computed for small subsamples with Target-rotated factors of the total sample was more pronounced for mean Target-rotation than for conventional Target-rotation. Discussion: Mean Target-rotation can be recommended in the context of oblique independent factor models, especially for small samples. An R-script and an SPSS-script for this form of Target-rotation are provided in the Appendix.

The aim of this paper is to combine several Ivev-like modal systems characterized by 4-valued non-deterministic matrices (Nmatrices) with IDM4, a 4-valued expansion of Belnap-Dunn's logic FDE with an implication introduced by Pynko in 1999. In order to to this, we introduce a new methodology for combining logics which are characterized by means of swap structures, based on what we call superposition of snapshots. In particular, the combination of IDM4 with Tm, the 4-valued Ivlev's version of KT, will be analyzed with more details. From the semantical perspective, the idea is to combine the 4-valued swap structures (Nmatrices) for Tm (and several of its extensions) with the 4-valued twist structure (logical matrix) for IDM4. This superposition produces a universe of 6 snapshots, with 3 of them being designated. The multioperators over the new universe are defined by combining the specifications of the given swap and twist structures. This gives origin to 6 different paradefinite Ivlev-like modal logics, each one of them characterized by a 6-valued Nmatrix, and conservatively extending the original modal logic and IDM4. This important feature allows us to consider the proposed construction as a genuine technique for combining logics. In addition, it is possible to define in the combined logics a classicality operator in the sense of logics of evidence and truth (LETs). A sound and complete Hilbert-style axiomatization is also presented for the 6 combined systems, as well as a very simple Prolog program which implements the swap structures semantics for the 6 systems, which gives a decision procedure for satisfiability, refutability and validity of formulas in these logics.

北京阿比特科技有限公司