亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

One-shot image generation (OSG) with generative adversarial networks that learn from the internal patches of a given image has attracted world wide attention. In recent studies, scholars have primarily focused on extracting features of images from probabilistically distributed inputs with pure convolutional neural networks (CNNs). However, it is quite difficult for CNNs with limited receptive domain to extract and maintain the global structural information. Therefore, in this paper, we propose a novel structure-preserved method TcGAN with individual vision transformer to overcome the shortcomings of the existing one-shot image generation methods. Specifically, TcGAN preserves global structure of an image during training to be compatible with local details while maintaining the integrity of semantic-aware information by exploiting the powerful long-range dependencies modeling capability of the transformer. We also propose a new scaling formula having scale-invariance during the calculation period, which effectively improves the generated image quality of the OSG model on image super-resolution tasks. We present the design of the TcGAN converter framework, comprehensive experimental as well as ablation studies demonstrating the ability of TcGAN to achieve arbitrary image generation with the fastest running time. Lastly, TcGAN achieves the most excellent performance in terms of applying it to other image processing tasks, e.g., super-resolution as well as image harmonization, the results further prove its superiority.

相關內容

Integrating high-level semantically correlated contents and low-level anatomical features is of central importance in medical image segmentation. Towards this end, recent deep learning-based medical segmentation methods have shown great promise in better modeling such information. However, convolution operators for medical segmentation typically operate on regular grids, which inherently blur the high-frequency regions, i.e., boundary regions. In this work, we propose MORSE, a generic implicit neural rendering framework designed at an anatomical level to assist learning in medical image segmentation. Our method is motivated by the fact that implicit neural representation has been shown to be more effective in fitting complex signals and solving computer graphics problems than discrete grid-based representation. The core of our approach is to formulate medical image segmentation as a rendering problem in an end-to-end manner. Specifically, we continuously align the coarse segmentation prediction with the ambiguous coordinate-based point representations and aggregate these features to adaptively refine the boundary region. To parallelly optimize multi-scale pixel-level features, we leverage the idea from Mixture-of-Expert (MoE) to design and train our MORSE with a stochastic gating mechanism. Our experiments demonstrate that MORSE can work well with different medical segmentation backbones, consistently achieving competitive performance improvements in both 2D and 3D supervised medical segmentation methods. We also theoretically analyze the superiority of MORSE.

Despite the significant success of deep learning in computer vision tasks, cross-domain tasks still present a challenge in which the model's performance will degrade when the training set and the test set follow different distributions. Most existing methods employ adversarial learning or instance normalization for achieving data augmentation to solve this task. In contrast, considering that the batch normalization (BN) layer may not be robust for unseen domains and there exist the differences between local patches of an image, we propose a novel method called patch-aware batch normalization (PBN). To be specific, we first split feature maps of a batch into non-overlapping patches along the spatial dimension, and then independently normalize each patch to jointly optimize the shared BN parameter at each iteration. By exploiting the differences between local patches of an image, our proposed PBN can effectively enhance the robustness of the model's parameters. Besides, considering the statistics from each patch may be inaccurate due to their smaller size compared to the global feature maps, we incorporate the globally accumulated statistics with the statistics from each batch to obtain the final statistics for normalizing each patch. Since the proposed PBN can replace the typical BN, it can be integrated into most existing state-of-the-art methods. Extensive experiments and analysis demonstrate the effectiveness of our PBN in multiple computer vision tasks, including classification, object detection, instance retrieval, and semantic segmentation.

Large-scale text-to-image generation models have achieved remarkable progress in synthesizing high-quality, feature-rich images with high resolution guided by texts. However, these models often struggle with novel concepts, eg, new styles, object entities, etc. Although recent attempts have employed fine-tuning or prompt-tuning strategies to teach the pre-trained diffusion model novel concepts from a reference image set,they have the drawback of overfitting to the given reference images, particularly in one-shot applications, which is harmful to generate diverse and high-quality images while maintaining generation controllability. To tackle this challenge, we present a simple yet effective method called DreamArtist, which employs a positive-negative prompt-tuning learning strategy. Specifically, DreamArtist incorporates both positive and negative embeddings and jointly trains them. The positive embedding aggressively captures the salient characteristics of the reference image to drive diversified generation and the negative embedding rectifies inadequacies from the positive embedding. It learns not only what is correct, but also what can be avoided or improved. We have conducted extensive experiments and evaluated the proposed method from image similarity and diversity, generation controllability, and style cloning. And our DreamArtist has achieved a superior generation performance over existing methods. Besides, our additional evaluation on extended tasks, including concept compositions and prompt-guided image editing, demonstrates its effectiveness for more applications.

Generating grammatically and semantically correct captions in video captioning is a challenging task. The captions generated from the existing methods are either word-by-word that do not align with grammatical structure or miss key information from the input videos. To address these issues, we introduce a novel global-local fusion network, with a Global-Local Fusion Block (GLFB) that encodes and fuses features from different parts of speech (POS) components with visual-spatial features. We use novel combinations of different POS components - 'determinant + subject', 'auxiliary verb', 'verb', and 'determinant + object' for supervision of the POS blocks - Det + Subject, Aux Verb, Verb, and Det + Object respectively. The novel global-local fusion network together with POS blocks helps align the visual features with language description to generate grammatically and semantically correct captions. Extensive qualitative and quantitative experiments on benchmark MSVD and MSRVTT datasets demonstrate that the proposed approach generates more grammatically and semantically correct captions compared to the existing methods, achieving the new state-of-the-art. Ablations on the POS blocks and the GLFB demonstrate the impact of the contributions on the proposed method.

In recent years, the development of deep learning has been pushing image denoising to a new level. Among them, self-supervised denoising is increasingly popular because it does not require any prior knowledge. Most of the existing self-supervised methods are based on convolutional neural networks (CNN), which are restricted by the locality of the receptive field and would cause color shifts or textures loss. In this paper, we propose a novel Denoise Transformer for real-world image denoising, which is mainly constructed with Context-aware Denoise Transformer (CADT) units and Secondary Noise Extractor (SNE) block. CADT is designed as a dual-branch structure, where the global branch uses a window-based Transformer encoder to extract the global information, while the local branch focuses on the extraction of local features with small receptive field. By incorporating CADT as basic components, we build a hierarchical network to directly learn the noise distribution information through residual learning and obtain the first stage denoised output. Then, we design SNE in low computation for secondary global noise extraction. Finally the blind spots are collected from the Denoise Transformer output and reconstructed, forming the final denoised image. Extensive experiments on the real-world SIDD benchmark achieve 50.62/0.990 for PSNR/SSIM, which is competitive with the current state-of-the-art method and only 0.17/0.001 lower. Visual comparisons on public sRGB, Raw-RGB and greyscale datasets prove that our proposed Denoise Transformer has a competitive performance, especially on blurred textures and low-light images, without using additional knowledge, e.g., noise level or noise type, regarding the underlying unknown noise.

We present a method to efficiently generate 3D-aware high-resolution images that are view-consistent across multiple target views. The proposed multiplane neural radiance model, named GMNR, consists of a novel {\alpha}-guided view-dependent representation ({\alpha}-VdR) module for learning view-dependent information. The {\alpha}-VdR module, faciliated by an {\alpha}-guided pixel sampling technique, computes the view-dependent representation efficiently by learning viewing direction and position coefficients. Moreover, we propose a view-consistency loss to enforce photometric similarity across multiple views. The GMNR model can generate 3D-aware high-resolution images that are viewconsistent across multiple camera poses, while maintaining the computational efficiency in terms of both training and inference time. Experiments on three datasets demonstrate the effectiveness of the proposed modules, leading to favorable results in terms of both generation quality and inference time, compared to existing approaches. Our GMNR model generates 3D-aware images of 1024 X 1024 pixels with 17.6 FPS on a single V100. Code : //github.com/VIROBO-15/GMNR

Recent CLIP-guided 3D optimization methods, such as DreamFields and PureCLIPNeRF, have achieved impressive results in zero-shot text-to-3D synthesis. However, due to scratch training and random initialization without prior knowledge, these methods often fail to generate accurate and faithful 3D structures that conform to the input text. In this paper, we make the first attempt to introduce explicit 3D shape priors into the CLIP-guided 3D optimization process. Specifically, we first generate a high-quality 3D shape from the input text in the text-to-shape stage as a 3D shape prior. We then use it as the initialization of a neural radiance field and optimize it with the full prompt. To address the challenging text-to-shape generation task, we present a simple yet effective approach that directly bridges the text and image modalities with a powerful text-to-image diffusion model. To narrow the style domain gap between the images synthesized by the text-to-image diffusion model and shape renderings used to train the image-to-shape generator, we further propose to jointly optimize a learnable text prompt and fine-tune the text-to-image diffusion model for rendering-style image generation. Our method, Dream3D, is capable of generating imaginative 3D content with superior visual quality and shape accuracy compared to state-of-the-art methods.

We consider the problem of referring image segmentation. Given an input image and a natural language expression, the goal is to segment the object referred by the language expression in the image. Existing works in this area treat the language expression and the input image separately in their representations. They do not sufficiently capture long-range correlations between these two modalities. In this paper, we propose a cross-modal self-attention (CMSA) module that effectively captures the long-range dependencies between linguistic and visual features. Our model can adaptively focus on informative words in the referring expression and important regions in the input image. In addition, we propose a gated multi-level fusion module to selectively integrate self-attentive cross-modal features corresponding to different levels in the image. This module controls the information flow of features at different levels. We validate the proposed approach on four evaluation datasets. Our proposed approach consistently outperforms existing state-of-the-art methods.

Retrieving object instances among cluttered scenes efficiently requires compact yet comprehensive regional image representations. Intuitively, object semantics can help build the index that focuses on the most relevant regions. However, due to the lack of bounding-box datasets for objects of interest among retrieval benchmarks, most recent work on regional representations has focused on either uniform or class-agnostic region selection. In this paper, we first fill the void by providing a new dataset of landmark bounding boxes, based on the Google Landmarks dataset, that includes $94k$ images with manually curated boxes from $15k$ unique landmarks. Then, we demonstrate how a trained landmark detector, using our new dataset, can be leveraged to index image regions and improve retrieval accuracy while being much more efficient than existing regional methods. In addition, we further introduce a novel regional aggregated selective match kernel (R-ASMK) to effectively combine information from detected regions into an improved holistic image representation. R-ASMK boosts image retrieval accuracy substantially at no additional memory cost, while even outperforming systems that index image regions independently. Our complete image retrieval system improves upon the previous state-of-the-art by significant margins on the Revisited Oxford and Paris datasets. Code and data will be released.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司